UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Examination in: MAT2200 - Groups, Rings and Fields.
Day of examination: Thursday 7. Juni 2007.
Examination hours: 09.00-12.00.
This examination set consists of 2 pages.
Appendices: None.
Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

Exercise 1. Let $M_{2}\left(\mathbb{Z}_{3}\right)$ be the ring of 2×2-matrices over the field \mathbb{Z}_{3} and let G be the subring of $M_{2}\left(\mathbb{Z}_{3}\right)$ given by

$$
G=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{3}\right\}
$$

where G has the operations of matrix addition and multiplication from $M_{2}\left(\mathbb{Z}_{3}\right)$.
a) Prove that G is a field.
b) Show that the polynomial $x^{2}+1$ is irreducible over \mathbb{Z}_{3} and explain why $\mathbb{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$ becomes a field.
c) Let α be a zero of $x^{2}+1$ in an extension field of \mathbb{Z}_{3}. Remember that $\mathbb{Z}_{3}(\alpha)$ is by definition isomorphic to $\mathbb{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$. Show that the map

$$
\phi\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right)=a+\alpha b
$$

is an isomorphism from G onto $\mathbb{Z}_{3}(\alpha)$.

Exercise 2.

a) Show that the polynomial $f(x)=x^{5}-2$ is irreducible over \mathbb{Q}.
b) Let $K=\mathbb{Q}(\sqrt[5]{2}, \zeta)$ where $\sqrt[5]{2}$ is the real 5 -root of 2 and ζ is a primitive 5 -root of unity $\left(=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)$. Show that K is the splitting field of $f(x)$ over \mathbb{Q} and that $[K: \mathbb{Q}]=20$.
c) Explain why there is only one intermediate field $\mathbb{Q} \leq K^{\prime} \leq K$ with K^{\prime} normal over \mathbb{Q} and $\left[K^{\prime}: \mathbb{Q}\right]=4$.
d) Find the number of intermediate fields $\mathbb{Q} \leq E \leq K$ such that $G(K / E)$ corresponds to Sylow 2-subgroups of $G(K / \mathbb{Q})$.

Exercise 3. Let $\alpha=\sqrt{5-2 \sqrt{5}}$.
a) Find the irreducible polynomial $f(x)$ of α over \mathbb{Q}.
b) Let K be the splitting field of $f(x)$ over \mathbb{Q}. Explain why $[K: \mathbb{Q}]=4$. Show that $[K: \mathbb{Q}(\sqrt{5})]=2$.
c) Show that the Galois group $G(K / \mathbb{Q})$ is isomorphic to the cyclic group $\left(\mathbb{Z}_{4},+\right)$. (Hint: note that one of the elements β in K that is conjugate with α over \mathbb{Q} satisfies $\alpha \beta=\sqrt{5}$ and consider extensions to $G(K / \mathbb{Q})$ of the non-trivial element in $G(\mathbb{Q}(\sqrt{5}) / \mathbb{Q}))$.

