UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: MAT2200 — Groups, Rings and Fields.
Day of examination: Thursday 7. Juni 2007.
Examination hours: 09.00 – 12.00.
This examination set consists of 2 pages.
Appendices: None.
Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

Exercise 1. Let $M_2(\mathbb{Z}_3)$ be the ring of 2×2 -matrices over the field \mathbb{Z}_3 and let G be the subring of $M_2(\mathbb{Z}_3)$ given by

$$G = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_3 \},\$$

where G has the operations of matrix addition and multiplication from $M_2(\mathbb{Z}_3)$.

a) Prove that G is a field.

b) Show that the polynomial $x^2 + 1$ is irreducible over \mathbb{Z}_3 and explain why $\mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$ becomes a field.

c) Let α be a zero of $x^2 + 1$ in an extension field of \mathbb{Z}_3 . Remember that $\mathbb{Z}_3(\alpha)$ is by definition isomorphic to $\mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$. Show that the map

$$\phi\left(\left(\begin{array}{cc}a&b\\-b&a\end{array}\right)\right) = a + \alpha b$$

is an isomorphism from G onto $\mathbb{Z}_3(\alpha)$.

(Continued on page 2.)

Exercise 2.

a) Show that the polynomial $f(x) = x^5 - 2$ is irreducible over \mathbb{Q} .

b) Let $K = \mathbb{Q}(\sqrt[5]{2}, \zeta)$ where $\sqrt[5]{2}$ is the real 5-root of 2 and ζ is a primitive 5-root of unity $(= \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5})$. Show that K is the splitting field of f(x) over \mathbb{Q} and that $[K : \mathbb{Q}] = 20$.

c) Explain why there is only one intermediate field $\mathbb{Q} \leq K' \leq K$ with K' normal over \mathbb{Q} and $[K':\mathbb{Q}] = 4$.

d) Find the number of intermediate fields $\mathbb{Q} \leq E \leq K$ such that G(K/E) corresponds to Sylow 2-subgroups of $G(K/\mathbb{Q})$.

Exercise 3. Let $\alpha = \sqrt{5 - 2\sqrt{5}}$.

a) Find the irreducible polynomial f(x) of α over \mathbb{Q} .

b) Let K be the splitting field of f(x) over \mathbb{Q} . Explain why $[K : \mathbb{Q}] = 4$. Show that $[K : \mathbb{Q}(\sqrt{5})] = 2$.

c) Show that the Galois group $G(K/\mathbb{Q})$ is isomorphic to the cyclic group $(\mathbb{Z}_4, +)$. (Hint: note that one of the elements β in K that is conjugate with α over \mathbb{Q} satisfies $\alpha\beta = \sqrt{5}$ and consider extensions to $G(K/\mathbb{Q})$ of the non-trivial element in $G(\mathbb{Q}(\sqrt{5})/\mathbb{Q}))$.

END