UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in	MAT 2200 — Groups, rings and fields
Day of examination:	Friday 6. june 2008.
Examination hours:	9.00-12.00.
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a

Find three different abelian groups of order 8 and give reasons why all abelian groups of order 8 are isomorphic to one of these.

b

Find a non-abelian group of order 8. Give reasons, why it is not abelian

с

How many subgroups of order 8 are there in S_4 , the symmetric group on 4 elements. How many of these are abelian? Give reasons for your answer.

Problem 2

a

Show that $x^5 + 4x^3 + 2$ is irreducible over \mathbb{Q} .

b

Show that x^2+1 , x^2+x-1 and x^2-x-1 are the only irreducible polynomials of degree 2 over \mathbb{Z}_3 , and show that x^5+4x^3+2 is irredusible over \mathbb{Z}_3 .

с

Explain why $F = \mathbb{Z}_3[x]/(x^5 + 4x^3 + 2)$ form a field that contains \mathbb{Z}_3 . How many elements are there in F?

Problem 3

Let $f(x) = x^4 - 2x^2 - 3$.

a

Find the splitting field E of f(x) over \mathbb{Q} . What is $[E:\mathbb{Q}]$ and $G(E/\mathbb{Q})$?

\mathbf{b}

Find an element $a \in E$ such that $E = \mathbb{Q}(a)$ (simple extension). Find the minimal polynomial $(Irr(a, \mathbb{Q}))$ of a over \mathbb{Q} .