# UNIVERSITY OF OSLO <br> Faculty of Mathematics and Natural Sciences 

Examination in: MAT2200 — Groups, Rings and Fields
Day of examination: 14. June 2016
Examination hours: 14.30-18.30
This problem set consists of 3 pages.
Appendices:
none
Permitted aids:
none

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All problems have equal weight.

## Problem 1

## 1a

Find all abelian groups of order 12 up to isomorphism.

## 1b

Show that the matrices

$$
M=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \quad \right\rvert\, \quad a, c \in \mathbb{Z}_{3} \backslash\{0\}, b \in \mathbb{Z}_{3}\right\}
$$

form a group under matrix multiplication.
What is the order of $M$ ? Find and list all elements in $M$ of order 3. Is $M$ abelian? Give reasons for your answer.

## 1c

A permutation is even (resp. odd) if it is a product of an even (resp. odd) number of transpositions.
Show that a 3-cycle is even, and that a 4-cycle is odd.
(Continued on page 2.)

## 1d

The set of even permutations on 4 elements is a group of order 12. Is it isomorphic to $M$ ? Give reasons for your answer.

## Problem 2

Let $K$ be the splitting field of $f=\left(x^{3}-8\right)\left(x^{2}-2\right) \in \mathbb{Q}[x]$.

## 2a

Find the degree $[K: \mathbb{Q}]$ and the group $G(K / \mathbb{Q})$.

## 2b

Find an element $a \in K$ such that $K=\mathbb{Q}(a)$.

## Problem 3

## 3a

What is an integral domain? Show that $\mathbb{Z}[x] /\left(x^{2}+1\right)$ is a integral domain. Is $\mathbb{Z}[x] /\left(x^{2}-1\right)$ an integral domain? Give reasons for your answer.

## Problem 4

An element $r \neq 0$ in a ring is nilpotent if $r^{n}=0$ for some $n>1$.

## $4 \mathbf{a}$

Show that the set of nilpotent elements in a commutative ring together with 0 form an ideal.

## 4b

The set of matrices

$$
M^{\prime}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \right\rvert\, \quad a, b, c, d \in \mathbb{Z}_{3}\right\}
$$

with matrix addition and matrix multiplication is a ring. Show that a nilpotent element in $M^{\prime}$ has determinant $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=0$. Find and list all nilpotent elements in $M^{\prime}$.

