UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: MAT2200 - Grupper, ringer og kropper
Day of examination: Monday, June 12, 2017
Examination hours: 14.30-18.30
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let F be a field and consider the set of matrices

$$
U(F)=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]: a, b, c \in F\right\}
$$

a

Show that $U(F)$ is a group under matrix multiplication. Is it abelian?

b

The group $U(F)$ has a subgroup

$$
H=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & a & 1
\end{array}\right]: a, b \in F\right\}
$$

Show that H is abelian and normal. If $F=\mathbb{Z}_{2}$ which group is H ?

c

Set $U=U\left(\mathbb{Z}_{2}\right)$. Let $X \subset \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ be the set $X=\left\{(1, y, z): y, z \in \mathbb{Z}_{2}\right\}$. Show that U acts on X and that the action induces an injective group homomorphism $U \rightarrow S_{4}$ where S_{4} is the permutation group of sets with 4 elements. Which subgroup of S_{4} is it?

Problem 2

a

Let H and K be normal subgroups of a group G such that $H \cap K=\{e\}$. Prove that there is an injective group homomorphism $H \times K \rightarrow G$.

b

Use the Sylow theorems and the classification of finite abelian groups to find (up to isomorphism) all groups of order 99. (You may use without proof that if p is a prime number and $|G|=p^{2}$ then G is abelian.)

Problem 3

Let ω be the complex number $\omega=e^{\frac{2 \pi i}{12}}=\frac{\sqrt{3}}{2}+\frac{1}{2} i$. Let $f(x)=x^{6}+1 \in \mathbb{Q}[x]$. Note that if α is a zero for $f(x)$ then so is $\alpha^{2 k+1}$ for any integer k and that $-\alpha=\alpha^{7}$.

a

Show that $f(x)=h(x) g(x)$ in $\mathbb{Q}[x]$ where $h(x)$ has degree 2 and $g(x)$ has degree 4. (Hint: The complex number i is a zero for $f(x)$.)

b

Show that $\mathbb{Q}(\omega)$ is a splitting field for $f(x)$ and that $\mathbb{Q}(\omega)=\mathbb{Q}(\sqrt{3}, i)$. Compute $[\mathbb{Q}(\omega): \mathbb{Q}]$ and the Galois group $G(\mathbb{Q}(\omega) / \mathbb{Q})$. Explain why we may conclude that $g(x)$ is irreducible.

Problem 4

a

Let F be a field and assume that $f(x) \in F[x]$ is an irreducible polynomial of degree n. Let K be a splitting field for $f(x)$. Explain why $n \leq[K: F] \leq n!$. If n is odd and there exists $\delta \in K$ with $\delta^{2} \in F$ but $\delta \notin F$, show that $2 n \leq[K: F]$.

b

Assume now that $f(x)$ is an irreducible degree 3 polynomial in $\mathbb{Q}[x]$ and let K be a splitting field for $f(x)$. Let α_{1}, α_{2} and α_{3} be the zeroes of $f(x)$ in K. Let S be the permutation group of $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and let $G=G(K / \mathbb{Q})$ be the Galois group. We may think of G as a subgroup of S.

Define

$$
\delta=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right) \in K
$$

and set $D=\delta^{2}$.
Show that if $\sigma \in G$ then $\sigma(D)=D$. Explain why this implies that $D \in \mathbb{Q}$. Prove that if D is not a square in \mathbb{Q} then $[K: \mathbb{Q}]=6$ and $G \simeq S$.
(Continued on page 3.)
c
Let τ be a transposition in S. Prove that if D is a square in \mathbb{Q} then $\tau \notin G$. (Hint: What does τ do to δ ?) Use this to show that if D is a square in \mathbb{Q} then $[K: \mathbb{Q}]=3$ and $G \simeq \mathbb{Z}_{3}$.

END

