UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT2200 – Grupper, ringer og kropper
Day of examination:	Monday, June 12, 2017
Examination hours:	14.30-18.30
This problem set consists of 3 pages.	
Appendices:	None
Permitted aids:	None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Let ${\cal F}$ be a field and consider the set of matrices

$$U(F) = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} : a, b, c \in F \right\} \ .$$

а

Show that U(F) is a group under matrix multiplication. Is it abelian?

\mathbf{b}

The group U(F) has a subgroup

$$H = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & a & 1 \end{bmatrix} : a, b \in F \right\} .$$

Show that H is abelian and normal. If $F = \mathbb{Z}_2$ which group is H?

С

Set $U = U(\mathbb{Z}_2)$. Let $X \subset \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ be the set $X = \{(1, y, z) : y, z \in \mathbb{Z}_2\}$. Show that U acts on X and that the action induces an injective group homomorphism $U \to S_4$ where S_4 is the permutation group of sets with 4 elements. Which subgroup of S_4 is it?

(Continued on page 2.)

Problem 2

а

Let H and K be normal subgroups of a group G such that $H \cap K = \{e\}$. Prove that there is an injective group homomorphism $H \times K \to G$.

\mathbf{b}

Use the Sylow theorems and the classification of finite abelian groups to find (up to isomorphism) all groups of order 99. (You may use without proof that if p is a prime number and $|G| = p^2$ then G is abelian.)

Problem 3

Let ω be the complex number $\omega = e^{\frac{2\pi i}{12}} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$. Let $f(x) = x^6 + 1 \in \mathbb{Q}[x]$. Note that if α is a zero for f(x) then so is α^{2k+1} for any integer k and that $-\alpha = \alpha^7$.

а

Show that f(x) = h(x)g(x) in $\mathbb{Q}[x]$ where h(x) has degree 2 and g(x) has degree 4. (Hint: The complex number *i* is a zero for f(x).)

\mathbf{b}

Show that $\mathbb{Q}(\omega)$ is a splitting field for f(x) and that $\mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{3}, i)$. Compute $[\mathbb{Q}(\omega) : \mathbb{Q}]$ and the Galois group $G(\mathbb{Q}(\omega)/\mathbb{Q})$. Explain why we may conclude that g(x) is irreducible.

Problem 4

а

Let F be a field and assume that $f(x) \in F[x]$ is an irreducible polynomial of degree n. Let K be a splitting field for f(x). Explain why $n \leq [K:F] \leq n!$. If n is odd and there exists $\delta \in K$ with $\delta^2 \in F$ but $\delta \notin F$, show that $2n \leq [K:F]$.

\mathbf{b}

Assume now that f(x) is an irreducible degree 3 polynomial in $\mathbb{Q}[x]$ and let K be a splitting field for f(x). Let α_1 , α_2 and α_3 be the zeroes of f(x) in K. Let S be the permutation group of $\{\alpha_1, \alpha_2, \alpha_3\}$ and let $G = G(K/\mathbb{Q})$ be the Galois group. We may think of G as a subgroup of S.

Define

$$\delta = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2) \in K$$

and set $D = \delta^2$.

Show that if $\sigma \in G$ then $\sigma(D) = D$. Explain why this implies that $D \in \mathbb{Q}$. Prove that if D is not a square in \mathbb{Q} then $[K : \mathbb{Q}] = 6$ and $G \simeq S$.

(Continued on page 3.)

С

Let τ be a transposition in S. Prove that if D is a square in \mathbb{Q} then $\tau \notin G$. (Hint: What does τ do to δ ?) Use this to show that if D is a square in \mathbb{Q} then $[K : \mathbb{Q}] = 3$ and $G \simeq \mathbb{Z}_3$.