UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT2200 — Groups, rings and fields
Day of examination:	Friday 14. June 2019
Examination hours:	9:00-13:00
This problem set consists of 2 pages.	
Appendices:	none
Permitted aids:	none

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Finite abelian groups

 \mathbf{a}

Is $\mathbb{Z}_{\geq 0}$ equipped with the operation of addition a group? Justify your answer.

\mathbf{b}

What are the abelian groups of order 18 up to isomorphism?

С

What are the cosets of the subgroup $\langle (0,3) \rangle$ in the group $\mathbb{Z}_2 \times \mathbb{Z}_9$? Describe the quotient

$$\frac{\mathbb{Z}_2\times\mathbb{Z}_9}{\langle(0,3)\rangle}$$

as a product of finite cyclic groups.

Problem 2 Symmetric group

\mathbf{a}

Let $\sigma = (2, 6, 1, 4, 3)$ and $\tau = (5, 2, 1, 3)$ be permutations in S_6 . Express the compositions $\sigma \tau$ in disjoint cycle notation. What is the order of $\sigma \tau$?

\mathbf{b}

Show that if $\sigma \in S_n$ is a cycle of odd length 2k + 1 then σ^2 is also a cycle of length 2k + 1.

(Continued on page 2.)

С

Let G be a subgroup of the symmetric group S_n such that there exist permutations $\sigma_2, \ldots, \sigma_n \in G$ satisfying $\sigma_i(1) = i$ for $2 \leq i \leq n$. Show that G acts **transitively** on the set $\{1, \ldots, n\}$. In other words, show that for each pair $1 \leq i, j \leq n$ there is a permutation $\sigma \in G$ such that $\sigma(i) = j$.

Problem 3 Rings and quotients

a

Show that if n is not a prime number, then $n\mathbb{Z}$ is not a prime ideal of \mathbb{Z} .

\mathbf{b}

Show that the quotient

$$\frac{\mathbb{Z}_2[x]}{\langle x^3 + x + 1 \rangle}$$

is a field. How many elements does it contain?

С

Find a polynomial $p(x) \in \mathbb{Z}_2[x]$ such that $\deg(p(x)) \leq 2$ and

$$x^{5} + \langle x^{3} + x + 1 \rangle = p(x) + \langle x^{3} + x + 1 \rangle$$

in $\frac{\mathbb{Z}_2[x]}{\langle x^3 + x + 1 \rangle}$.

Problem 4 Galois theory

а

Let K be the splitting field of the polynomial $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ over \mathbb{Q} . Find the degree $[K : \mathbb{Q}]$ and the Galois group $G(K, \mathbb{Q})$.

\mathbf{b}

Let K be the splitting field of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3 over \mathbb{Q} . Let A_3 denote the alternating group, i.e. the subgroup of even permutations in S_3 . Show that $G(K, \mathbb{Q}) = A_3$ if and only if $K = \mathbb{Q}(\alpha)$ where α is a root of f(x).

С

Conclude that all roots of the polynomial f(x) from part b) must be in \mathbb{R} . Hint: Use that a polynomial of odd degree with coefficients in \mathbb{Q} must have at least one real root $\alpha \in \mathbb{R}$.

THE END