# UNIVERSITY OF OSLO <br> Faculty of mathematics and natural sciences 

Exam in: $\quad$ MAT2200 - Groups, rings and fields
Day of examination: Friday 14. June 2019
Examination hours: 9:00-13:00
This problem set consists of 2 pages.
Appendices: none
Permitted aids: none

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

## Problem 1 Finite abelian groups

## a

Is $\mathbb{Z}_{\geq 0}$ equipped with the operation of addition a group? Justify your answer.
b
What are the abelian groups of order 18 up to isomorphism?
c
What are the cosets of the subgroup $\langle(0,3)\rangle$ in the group $\mathbb{Z}_{2} \times \mathbb{Z}_{9}$ ? Describe the quotient

$$
\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{9}}{\langle(0,3)\rangle}
$$

as a product of finite cyclic groups.

## Problem 2 Symmetric group

## a

Let $\sigma=(2,6,1,4,3)$ and $\tau=(5,2,1,3)$ be permutations in $S_{6}$. Express the compositions $\sigma \tau$ in disjoint cycle notation. What is the order of $\sigma \tau$ ?

## b

Show that if $\sigma \in S_{n}$ is a cycle of odd length $2 k+1$ then $\sigma^{2}$ is also a cycle of length $2 k+1$.

## c

Let $G$ be a subgroup of the symmetric group $S_{n}$ such that there exist permutations $\sigma_{2}, \ldots, \sigma_{n} \in G$ satisfying $\sigma_{i}(1)=i$ for $2 \leq i \leq n$. Show that $G$ acts transitively on the set $\{1, \ldots, n\}$. In other words, show that for each pair $1 \leq i, j \leq n$ there is a permutation $\sigma \in G$ such that $\sigma(i)=j$.

## Problem 3 Rings and quotients

## a

Show that if $n$ is not a prime number, then $n \mathbb{Z}$ is not a prime ideal of $\mathbb{Z}$.

## b

Show that the quotient

$$
\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}+x+1\right\rangle}
$$

is a field. How many elements does it contain?

## c

Find a polynomial $p(x) \in \mathbb{Z}_{2}[x]$ such that $\operatorname{deg}(p(x)) \leq 2$ and

$$
x^{5}+\left\langle x^{3}+x+1\right\rangle=p(x)+\left\langle x^{3}+x+1\right\rangle
$$

in $\frac{\mathbb{Z}_{2}[x]}{\left\langle x^{3}+x+1\right\rangle}$.

## Problem 4 Galois theory

a
Let $K$ be the splitting field of the polynomial $f(x)=x^{3}-2 \in \mathbb{Q}[x]$ over $\mathbb{Q}$. Find the degree $[K: \mathbb{Q}]$ and the Galois group $G(K, \mathbb{Q})$.

## b

Let $K$ be the splitting field of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree 3 over $\mathbb{Q}$. Let $A_{3}$ denote the alternating group, i.e. the subgroup of even permutations in $S_{3}$. Show that $G(K, \mathbb{Q})=A_{3}$ if and only if $K=\mathbb{Q}(\alpha)$ where $\alpha$ is a root of $f(x)$.

## c

Conclude that all roots of the polynomial $f(x)$ from part b) must be in $\mathbb{R}$. Hint: Use that a polynomial of odd degree with coefficients in $\mathbb{Q}$ must have at least one real root $\alpha \in \mathbb{R}$.

