UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in MAT2200 - Groups, rings and fields.
Day of examination: 29 May 2020 at 9:00 to 8 June 2020 at 9:00
Examination hours: 29 May at 9:00-8 June at 9:00.
This problem set consists of 4 pages.
Appendices: All.
Permitted aids: All.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Important: This is a take-home exam. You must provide justification for all your answers. You may deliver the solution to the exam written in Norwegian or English. For a short dictionary: field is "kropp", splitting field is "rotkropp", degree of an extension is "tallgrad", homomorphism is "homomorfi".

There are 15 subproblems distributed over 5 main problems. The 15 subproblems have equal weight. To pass the exam, you need to solve correctly 40% of the total of 15 subproblems.

Problem 1

Let S_{4} be the permutation group on 4 letters. Denote by ι the identity permutation, and by (i, j) the transposition corresponding to distinct i, j in $\{1,2,3,4\}$. For σ in S_{4}, we write $\sigma(i, j)$ for the composition of functions $\sigma \circ(i, j)$ in S_{4}. For instance if σ is the 4-cycle $(1,3,2,4)$ and $(i, j)=(1,3)$ then the composition $\sigma(i, j)$ is

$$
\sigma(1,3)=\sigma \circ(1,3)=(1,2,4)
$$

a 3-cycle. Note that this is typically different from the transposition $(\sigma(i), \sigma(j))$, which in this case would be

$$
(\sigma(1), \sigma(3))=(3,2)
$$

Let $\mu_{1}=(1,2)(3,4), \mu_{2}=(1,4)(2,3)$ and $\mu_{3}=(1,3)(2,4)$ in S_{4}.

12

Prove that $N=\left\{\iota, \mu_{1}, \mu_{2}, \mu_{3}\right\}$ is a subgroup of S_{4}. What known group is N isomorphic to?

1b

Prove that N is a normal subgroup of S_{4}. You can for example show that for each $\sigma \in S_{4}$ and each transposition (i, j) in S_{4}, we have that

$$
\sigma(i, j)=(\sigma(i), \sigma(j)) \sigma
$$

as mappings in S_{4}, where $(\sigma(i), \sigma(j))$ is again a transposition. Then use this fact to show that

$$
\sigma(i, j)(k, l) \sigma^{-1}=(\sigma(i), \sigma(j))(\sigma(k), \sigma(l))
$$

for all $\sigma \in S_{4}$ and any two disjoint transpositions (i, j) and (k, l) in S_{4}.

Problem 2

Let $M_{3}(F)$ be the ring of 3×3-matrices over a field F. For $a, b, c \in F$ we denote

$$
M(a, b, c)=\left(\begin{array}{ccc}
a & b & c \\
0 & a & 0 \\
0 & 0 & 0
\end{array}\right) \in M_{3}(F)
$$

Let R be the subset of $M_{3}(F)$ given by

$$
R=\{M(a, b, c) \mid a, b, c \in F\} .
$$

$2 a$

Show that R is a subring of $M_{3}(F)$. Show moreover that R is not commutative and does not contain unity.

2b

Define maps $\phi: R \rightarrow F$ and $\psi: R \rightarrow F$ by

$$
\phi(M(a, b, c))=a \text { and } \psi(M(a, b, c))=c,
$$

for $M(a, b, c) \in R$. Prove that ϕ is a ring homomorphism. Is ψ a ring homomorphism?

2c

Show that the subset $I=\{M(a, b, c) \in R \mid a=0\}$ is an ideal of R. Is I a maximal ideal of R ?

Problem 3

Let G be a group of order $|G|=1225$.

3a

Show that G has a unique Sylow p-subgroup for each prime p that divides $|G|$. Show further that G has two normal subgroups M and N such that the order of M is co-prime with the order of N. Explain why M and N are abelian (you can here use, without proof, a known result from the course).

3b

Show that G is isomorphic to the direct product $M \times N$. Conclude that G is abelian.

Problem 4

Consider the field $F=\mathbb{Z}_{3}$ and let $f(x)=x^{3}+2 x+1 \in F[x]$.

4 a

Explain why $K=F[x] /\langle f(x)\rangle$ is a field.

4b

We assume known that $K=F(\alpha)$, for $\alpha=x+\langle f(x)\rangle$ in K. Use α to write a basis for K over F. Express α^{6} and α^{4} in this basis.

4c

Find a monic polynomial $g(x)$ of degree 3 in $F[x]$ such that α^{2} is a zero of $g(x)$.

4d

Show that $f(1+\alpha)=0$ and $f(2+\alpha)=0$. Conclude that K is a splitting field of $f(x)$ over F.

Problem 5

Let $g(x)=x^{3}+4$ and $f(x)=x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+8 x+12$ in $\mathbb{Q}[x]$. Let L be the splitting field of $g(x)$ over \mathbb{Q} and K the splitting field of $f(x)$ over \mathbb{Q}.

$5 a$

Show that $g(x)$ divides $f(x)$ in $\mathbb{Q}[x]$ and that $f(x)$ has no zeros in \mathbb{Q}.

5b

Find the splitting field L and determine the degree $[L: \mathbb{Q}]$.
(Continued on page 4.)

5 c

Prove that $[K: L]=2$ and determine $[K: \mathbb{Q}]$. Explain why K is a finite normal extension of \mathbb{Q}.

5d

Explain why $G(K / L)$ is a normal subgroup of the Galois group $G(K / \mathbb{Q})$. Show that $G(K / \mathbb{Q})$ contains a normal subgroup N of order 6 , and that $G(K / \mathbb{Q})$ is the direct product of N and $G(K / L)$.

SLUTT.

