Exercise 1. Find and classify all groups of order 8.

Solution. By Lagrange theorem, the elements of G have order 1, 2, 4 or 8. If every element has order 2, then by the lemma G is abelian, and we have $G \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. If there is an element of order 8, the group is cyclic, hence abelian, and $G \simeq \mathbb{Z}_8$. Suppose there is an element $g \in G$ of order $|g| = 4$. Let $h \notin \langle g \rangle$. Then $|h| = 2$. Then as a set $G = \langle g \rangle \times \langle h \rangle$. The structure of G is decided by the product gh. Since $h \notin \langle g \rangle$ we have $hg \neq e$. If $hg = g^2 h$, then a conjugate element of g, $hgh = g^2$ has order 2, but g has order 4 which is impossible, since conjugation does not change the order of an element. Thus we are left with two possibilities, $hgh = gh$ which gives the abelian group $\mathbb{Z}_4 \times \mathbb{Z}_2$, or $hgh = g^3 h$. The last one we recognize as the dihedral group D_4.

Exercise 2. The tetrahedron is a regular solid with 4 vertices and 4 triangular faces. The symmetry group is the alternating group A_4. Compute the number of different paintings of a tetrahedron with n colours.

Solution. The set X of all paintings of the cube by up to n different colours has n^4 elements. The number of different paintings is the number of orbits in X under the action of the symmetry group of the cube. We shall use the Burnside Formula:

$$r = \frac{1}{|G|} \sum_{g \in G} |X_g|$$

where r be the number of orbits in X under the action of G.

We need to know the number of elements in the various fix point sets X_g, for all $g \in G$. This can be done by inspection for each element in the symmetry group. The results are listed in the table:

<table>
<thead>
<tr>
<th>symmetry</th>
<th>permutation</th>
<th>order</th>
<th>number</th>
<th>X_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>identity</td>
<td>e</td>
<td>1</td>
<td>1</td>
<td>n^4</td>
</tr>
<tr>
<td>vertex-midpoint-rotation</td>
<td>(123),(132),(124),(142) (134),(143),(234),(243)</td>
<td>2</td>
<td>8</td>
<td>n^2</td>
</tr>
<tr>
<td>midedge-midedge-rotation</td>
<td>(12)(34),(13)(24), (14)(23)</td>
<td>2</td>
<td>3</td>
<td>n^2</td>
</tr>
</tbody>
</table>
Inserting this into the Burnside Formula we get

\[r = r(n) = \frac{1}{12}(n^4 + 8n^2 + 3n^2) = \frac{n^2(n^2 + 11)}{12} \]

For some small values of \(n \) we get, \(r(1) = 1, r(2) = 5, r(3) = 15, r(4) = 36. \)

Exercise 3.

a) Show that the 24 elements of \(SL_2(\mathbb{F}_3) \) are the matrices

\[U_{a,b} = \begin{pmatrix} a & b \\ -b & 0 \end{pmatrix}, \quad b \neq 0 \quad \text{and} \quad V_{b,c,d} = \begin{pmatrix} d(b + 1) & b \\ c & d \end{pmatrix}, \quad d \neq 0 \]

There are 6 of the first type and 18 of the second type, and the two families are disjoint.

Solution. Notice that for \(a \neq 0 \), we have \(a^2 = 1 \). In general we have

\[\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc = 1 \]

We consider two separate cases, \(d = 0 \) or \(d \neq 0 \). If \(d = 0 \) we have \(bc = -1 \), i.e. \(c = -b \). This is \(U_{a,b} \). If \(d \neq 0 \), then \(a = (1 + bc)d^{-1} = d(1 + bc) \), which is \(V_{b,c,d} \). The numbers are easily computed, in the \(U \) case as \(2 \cdot 3 = 6 \) and in the \(V \)-case as \(3^2 \cdot 2 = 18 \).

b) Show that the only element in \(SL_2(\mathbb{F}_3) \) of order 2 is \(-e = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \).

Solution. We have

\[(U_{a,b})^2 = \begin{pmatrix} a^2 - b^2 & ab \\ -ab & -b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

which is impossible since \(-b^2 \neq 1\), and

\[(V_{b,c,d})^2 = \begin{pmatrix} d^2(1 + bc)^2 + bc & d(b + 1)c \\ d(b - 1)c & bc + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

If \(b = c = 0 \), then we must have \(d^2 = 1 \). If \(d = 1 \), then \(V_{0,0,1} = Id \). If \(d = -1 \), then \(V_{0,0,-1} = -Id \).

If \(b \neq 0 \), then we must have \(bc - 1 = 0 \). But then \(d^2 = 0 \) which again is impossible.

c) Show that in the \(U \)-family we have order \(|U_{a,b}| = 4 \) if and only if \(a = 0 \), and in the \(V \)-family we have \(|V_{b,c,d}| = 4 \) if and only if \(bc = 1 \). Thus we have 6 elements of order 4 in the group.

Solution. If \(|U_{a,b}| = 4 \), then \(ab = 0 \), \(a^2 - b^2 = -1 \) and \(-b^2 = -1 \), which is possible only if \(a = 0 \).

We have \(|V_{b,c,d}| = 4 \) if \(d^2(1 + bc)^2 + bc = -1 \), \(d(b - 1)c = d(b - 1)c = 0 \) and \(bc + d^2 = -1 \). If \(b = c = 0 \), then \(d^2 = -1 \) which is impossible. If \(b \neq 0 \), then \(bc - 1 = 0 \) and \(d^2 = 1 \).

The 6 elements of order 4 are \(U_{0,1}, U_{0,-1}, V_{1,1,1}, V_{-1,-1,1}, V_{1,1,-1}, V_{-1,-1,-1} \).

\[U_{0,b} = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}, \quad V_{b,b,d} = \begin{pmatrix} -d & b \\ b & d \end{pmatrix} \]
d) Let \(H = \{e, -e, U_{0,1}, U_{0,-1}, V_{1,1,1}, V_{-1,-1,1}, V_{1,-1,-1}, V_{-1,1,-1}\} \) be the set consisting of the 6 elements of order 4, together with \(\pm e \). Show that \(H \) is a subgroup of \(SL_2(\mathbb{F}_3) \). Use Sylow theory to prove that \(H \) is normal.

Solution. We have \(H = \{\pm e, \pm U_{0,1}, \pm V_{1,1,1}, \pm V_{1,-1,1}\} \). \(H \) contains additive inverses and the identity element. It remains to show that \(H \) is closed under operation. The non-trivial elements have order 4, by c) and therefore they have square \(-Id\) by b). Furthermore,

\[
\begin{align*}
U_{0,1} \cdot V_{1,1,-1} &= -V_{1,1,1} \\
U_{0,1} \cdot V_{1,1,1} &= V_{1,1,-1} \\
V_{1,1,-1} \cdot U_{0,1} &= V_{1,1,1} \\
V_{1,1,-1} \cdot U_{0,1} &= -V_{1,1,-1} \\
V_{1,1,1} \cdot U_{0,1} &= -U_{0,1}
\end{align*}
\]

The group \(H \) is a Sylow-2-subgroup. There are 6 elements of order 4 in \(H \), and there are 6 elements of order 4 in the whole group. Since all Sylow-2-subgroups are conjugate, and therefore preserves order of elements, there can not be more than one sylow-2-subgroup, which then has to be normal.

e) The quaternion group \(Q \) has 8 elements, \(Q = \{\pm 1, \pm i, \pm j, \pm k\} \), where \(i^2 = j^2 = k^2 = -1 \), and \(ij = k = -ji, jk = i = -kj \) and \(ki = j = -ik \). We can write \(Q = \langle i, j \mid i^4 = e, ji = i^3j, j^2 = i^2 \rangle \)

Show that \(H \simeq Q \).

Solution. By identification, \(i \mapsto U_{0,1}, j \mapsto V_{1,1,1} \) and \(k \mapsto V_{1,1,-1} \).

The factor group \(SL_2(\mathbb{F}_3)/H \) has \(\frac{24}{8} = 3 \) elements. There is only one group of three elements, the cyclic group \(\mathbb{Z}_3 \). Using multiplicative notation, we write \(\mathbb{Z}_3 = \{H, tH, t^2H\} \), where \(t \) can be taken to be any element in \(SL_2(\mathbb{F}_3) \), outside of \(H \).

f) For your choice of \(t \), list the elements of the two cosets \(tH \) and \(t^2H \).

Solution. We choose \(t = U_{-1,-1} \), where \(t^3 = Id \). Then we have

\[
\begin{align*}
tH &= \{\pm U_{-1,-1}, \pm V_{-1,0,1}, \pm V_{0,1,1}, \pm V_{1,-1,1}\} \\
t^2H &= \{\pm V_{1,-1,-1}, \pm V_{0,1,-1}, \pm U_{-1,-1}, \pm V_{1,0,1}\}
\end{align*}
\]

g) In exercise e) you identified \(H \) with the quaternion group, i.e. you identified the quaternion elements \(i, j \) and \(k \) with some matrices in \(SL_2(\mathbb{F}_3) \). We know that \(H \) is a normal subgroup of \(SL_2(\mathbb{F}_3) \), thus we have \(tH = Ht \), and we can find elements \(q_1, q_2, q_3 \in Q \simeq H \) such that \(ti = q_1t, tj = q_2t \) and \(tk = q_3t \). Determine these elements in \(Q \).

Solution. We have \(q_1 = tit^2, q_2 = tjt^2 \) and \(q_3 = tkt^2 \). This gives \(q_1 = -V_{1,1,1}, \ q_2 = -V_{1,1,-1}, \ q_3 = U_{0,1} \)

h) Conclude that \(SL_2(\mathbb{F}_3) \) is isomorphic to the group generated by \(i, j \) and \(t \) and write up the defining relations. (We can drop \(k \) since \(k = ij \))

Solution.

\[
SL_2(\mathbb{F}_3) = \langle i, j, t \mid i^4 = e, ji = i^3j, j^2 = i^2, t^3 = e, ti = j^3t, tj = ij^3t \rangle
\]
Exercise 4.
In this exercise we shall classify all groups of order 12. Let G be a group of order $|G| = 12$, and let $P \subset G$ be a Sylow-3-subgroup. Then $|P| = 3$, and the index $(G : P) = 4$. Thus there are 4 left cosets of P in G, denoted $[G : P] = \{g_1P, g_2P, g_3P, g_4P\}$
Thus we have $Sym([G : P]) = S_4$. We define a map
\[\phi : G \to Sym([G : P]) \]
where $\phi(g)$ is the bijection of $[G : P]$ given by $\phi(g)(gP) = (gg_i)P$.

a) Show that ϕ is a homomorphism. Remember that the group operation in $Sym([G : P])$ is composition of maps.
Solution. We have
\[\phi(gh)(gP) = ghhg_iP = \phi(g)(hg_iP) = \phi(g)(\phi(h)(gP)) = \phi(g) \circ \phi(h)(gP) \]

b) Show that the homomorphism ϕ is injective if and only if P is not a normal subgroup of G. In that case we can consider G as a subgroup of $Sym([G : P])$.
Solution. If P is normal, then for any $g \in P$ we have
\[\phi(g)(gP) = ggg_iP = ggg_iP = gP = P \]
and ϕ is not injective.
If P is not normal, then $\phi(g) = \phi(h)$ implies $gg_iP = hg_iP$ for all $g_i \in G$, i.e. $g_i^{-1}h^{-1}gg_iP = P$. Thus we have $g_i^{-1}h^{-1}gg_i \in P$, or $h^{-1}g \in gP$ for all g_i. But if P is not normal, and has order 3, then $P \cap g^{-1}Pg = \{e\}$, and it follows that $h^{-1}g = e$, or $h = g$ and ϕ is injective.

c) In the case where P is not normal in G, use Sylow theory to show that there are 8 elements of order 3 in G.
Solution. P is a Sylow-3-subgroup, and since it is not normal, there must be at least 4 conjugate groups of order 3, with at least 8 different elements of order 3. But 7 Sylow-3-subgroups is impossible, since we then would have 14 elements of order 3, in a group of order 12.

d) Use the fact that there are 8 elements of order 3 in S_4, and any permutations of order 3 is even, to conclude that in this case we have $G \cong A_4$. (Hint: $G \cap A_4$ is a subgroup of G and has at least 8 elements)
Solution. The intersection $G \cap A_4$ is a subgroup of G with at least $8+1$ elements. By Lagrange we have $G \cap A_4 = G$. It follows that $G \subset A_4$, and again by Lagrange $G \cong A_4$.

Next we consider the case where P is a normal subgroup of G of order 3. Let $P = \langle t \rangle$ where $t^3 = e$. Denote by $Q = G/P$ the factor group. We have $|Q| = 4$. Before we continue we need some more terminology. For any group G we define the automorphism group $Aut(G)$ of G. It is the subset of $Sym(G)$ of bijective group homomorphisms.
e) Show that $Aut(P) \cong \mathbb{Z}_2$ for $P = \mathbb{Z}_3$.

Solution. An automorphism of $P = \{e, t, t^2\}$ must map e to e and t to either t or t^2. Denote the map $t \mapsto t^2$ by α. Then $\alpha^2 = \text{Id}$.

As a set, we have $G = P \times Q$, i.e. if $Q = \{q_0 = e, q_1, q_2, q_3\}$, then the elements of G can be written

$$G = \{e, t, t^2, q_1, tq_1, t^2q_1, q_2, tq_2, t^2q_2, q_3, tq_3, t^2q_3\}$$

To determine the structure of G we have to decide which elements in this set that correspond to the products q_jt. If we know this, we know the multiplication table of G, i.e. we know the structure of G.

f) Use the fact that P is a normal subgroup of G to show that $g \mapsto gxg^{-1}$ defines a homomorphism $G \rightarrow \text{Aut}(P)$.

Solution. We have $gh \mapsto ghx(gh)^{-1} = ghxh^{-1}g^{-1} = g[hxh^{-1}]g^{-1}$ where $hxh^{-1} \in P$.

g) Show that to give the products q_jt is equivalent to define a group homomorphism $\psi : Q \rightarrow \text{Aut}(P)$, where $\psi(q)(t) = qtq^{-1}$ for the generator $t \in P$.

Solution. Since P is normal the product q_jt must equal pq_j for some element $p \in P$. Thus we associate to any $q \in Q$ and $t \in P$ an element $qtq^{-1} \in P$. This is an homomorphism by f) and an automorphism since $|P| = 3$ and $(qtq^{-1})^2 = qt^2q^{-1}$.

h) If $Q \simeq Z_4$ show that there is a unique nontrivial homomorphism $\psi : Q \rightarrow \text{Aut}(P)$ defining a non-abelian structure on G. This group is called the dicyclic group Dic_3 or the generalized quaternion group Q_{12}.

Solution. If $Q \simeq Z_4$, the only homomorphism $\psi : Q \simeq Z_4 \rightarrow \text{Aut}(P) \simeq Z_2$ is the trivial one.

i) If $Q \simeq Z_2 \times Z_2$, show that there are 3 possible homomorphisms $\psi : Q \rightarrow \text{Aut}(P)$, but the 3 homomorphisms define isomorphic structures on G. This is the dihedral group D_6, the symmetry group of a hexagon.

Solution. There are 3 homomorphisms $\psi : Q \simeq Z_2 \times Z_2 \rightarrow \text{Aut}(P) \simeq Z_2$. Any two of them differ by an automorphism of Q, inducing an automorphism of G.

We conclude that in addition to the two abelian groups Z_{12} and $Z_2 \times Z_6$, there are 3 non-abelian groups of order 12, A_4, $\text{Dic}_3 \simeq Q_{12}$ and D_6.