to show a function is one to one is precisely to show that it does not carry two points into just one point. Thus, proving a function is one to one becomes more natural in the two-to-two terminology.

25

1'

SECTION 1

1.
$$-i$$
 3. $-i$ 5. $23 + 7i$

7.
$$17 - 15i$$
 9. $-4 + 4i$

11.
$$2\sqrt{13}$$
 13. $\sqrt{2}\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$

15.
$$\sqrt{34} \left(\frac{-3}{\sqrt{34}} + \frac{5}{\sqrt{34}} i \right)$$

17.
$$\frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$$
, $-\frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$ 19. $3i$, $\pm \frac{3\sqrt{3}}{2} - \frac{3}{2}i$ 21. $\sqrt{3} \pm i$, $\pm 2i$, $-\sqrt{3} \pm i$ 23. 4 25. $\frac{3}{8}$ 27. $\sqrt{2}$

21.
$$\sqrt{3} \pm i, \pm 2i, -\sqrt{3} \pm i$$
 23. 4 **25.** $\frac{3}{8}$ **27.** $\sqrt{2}$

35.
$$\zeta^0 \leftrightarrow 0, \zeta^3 \leftrightarrow 7, \zeta^4 \leftrightarrow 4, \zeta^5 \leftrightarrow 1, \zeta^6 \leftrightarrow 6, \zeta^7 \leftrightarrow 3$$

37. With
$$\zeta \leftrightarrow 4$$
, we must have $\zeta^2 \leftrightarrow 2$, $\zeta^3 \leftrightarrow 0$, and $\zeta^4 \leftrightarrow 4$ again, which is impossible for a one-to-one correspondence.

$$z_1 z_2 = |z_1||z_2|[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + (\cos\theta_1\sin\theta_2 + \sin\theta_1\cos\theta_2)i]$$

and the desired result follows at once from Exercise 38 and the equation $|z_1||z_2| = |z_1z_2|$.

SECTION 2

- 3. a, c. * is not associative. 1. e, b, a
- 5. Top row: d; second row: a; fourth row: c, b.
- 7. Not commutative, not associative
- 9. Commutative, associative
- 11. Not commutative, not associative
- **13.** 8, 729, $n^{[n(n+1)/2]}$
- 17. No. Condition 2 is violated. **19.** Yes
- 21. No. Condition 1 is violated.
- 23. a. Yes. b. Yes
- **25.** Let $S = \{?, \Delta\}$. Define * and *' on S by a * b = ? and $a *' b = \Delta$ for all $a, b \in S$. (Other answers are possible.)
- 29. True
- **31.** False. Let $f(x) = x^2$, g(x) = x, and h(x) = 2x + 1. Then $(f(x) - g(x)) - h(x) = x^2 - 3x - 1$ but $f(x) - (g(x) - h(x)) = x^2 - (-x - 1) = x^2 + x + 1.$
- **35.** False. Let * be + and let *' be on \mathbb{Z} . **33.** True

SECTION 3

- 1. i. ϕ must be one to one. ii. $\phi[S]$ must be all of S'. iii. $\phi(a*b) = \phi(a)*'\phi(b)$ for all $a, b \in S$.
- 3. No, because ϕ does not map \mathbb{Z} onto \mathbb{Z}' . $\phi(n) \neq 1$ for all $n \in \mathbb{Z}$.
- 7. Yes 9. Yes 5. Yes.
- 11. No, because $\phi(x^2) = \phi(x^2 + 1)$.
- 13. No, because $\phi(f) = x + 1$ has no solution $f \in F$.