499

- **35.** Let $\phi(m, n) = (m, 0)$ for $(m, n) \in \mathbb{Z}_2 \times \mathbb{Z}_4$.
- 37. Let $\phi(n) = \rho_n$ for $n \in \mathbb{Z}_3$, using our notation in the text for elements of S_3 .
- **39.** Let $\phi(m, n) = 2m$.
- **41.** Viewing D_4 as a group of permutations, let $\phi(\sigma) = (1, 2)$ for odd $\sigma \in D_4$ and $\phi(\sigma)$ be the identity for even $\sigma \in D_4$.
- **43.** Let $\phi(\sigma) = (1, 2)$ for odd $\sigma \in S_4$ and $\phi(\sigma)$ be the identity element for even $\sigma \in S_4$.
- **51.** The image of ϕ is $\langle a \rangle$, and $\text{Ker}(\phi)$ must be some subgroup $n\mathbb{Z}$ of \mathbb{Z} .
- 55. h^n must be the identity e of G. 53. hk = kh

SECTION 14

- 7. 2 5. 2 1. 3 3. 4
- 15. 1 13. 4 11. 3
- 21. a. When working with a factor group G/H, you would let a and b be elements of G, not elements of G/H. The student probably does not understand what elements of G/H look like and can write nothing sensible concerning them.
 - **b.** We must show that G/H is abelian. Let aH and bH be two elements of G/H.
- **g.** T **c.** *T* 23. a. T
- **29.** $\{\rho_0, \mu_1\}, \{\rho_0, \mu_2\}, \text{ and } \{\rho_0, \mu_3\}$
- **35.** Example: Let $G = N = S_3$, and let $H = \{\rho_0, \mu_1\}$. Then N is normal in G, but $H \cap N = H$ is not normal in G.

SECTION 15

- 9. $\mathbb{Z}_3 \times \mathbb{Z} \times \mathbb{Z}_4$ 5. $\mathbb{Z}_4 \times \mathbb{Z}_8$ 7. Z 3. \mathbb{Z}_4 1. \mathbb{Z}_2
- 13. $\mathbb{Z}(D_4) = C = \{\rho_0, \rho_2\}$ 11. $\mathbb{Z}_2 \times \mathbb{Z}$
- **15.** $Z(S_3 \times D_4) = \{(\rho_0, \rho_0), (\rho_0, \rho_2)\}$, using the notations for these groups in Section 8, $C = A_3 \times \{\rho_0, \rho_2\}$.
- g. F **e.** *F* **c.** *F* 19. a. T
- **21.** $\{f \in F^* | f(0) = 1\}$
- 23. Yes. Let f(x) = 1 for $x \ge 0$ and f(x) = -1 for x < 0. Then $f(x) \cdot f(x) = 1$ for all x, so $f^2 \in K^*$ but f is not in K^* . Thus $f K^*$ has order 2 in F^*/K^* .
- 27. The multiplicative group U of complex numbers of absolute value 1
- **29.** Let $G = \mathbb{Z}_2 \times \mathbb{Z}_4$. Then $H = \langle (1,0) \rangle$ is isomorphic to $K = \langle (0,2) \rangle$, but G/H is isomorphic to \mathbb{Z}_4 while G/K is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- **b.** The whole group 31. a. {e}

SECTION 16

- 1. $X_{\rho_0} = X, X_{\rho_1} = \{C\}, X_{\rho_2} = \{m_1, m_2, d_1, d_2, C\}, X_{\rho_3} = \{C\},\$ $X_{\mu_1} = \{s_1, s_3, m_1, m_2, C, P_1, P_3\}, X_{\mu_2} = \{s_2, s_4, m_1, m_2, C, P_2, P_4\},$ $X_{\delta_1} = \{2, 4, d_1, d_2, C\}, X_{\delta_2} = \{1, 3, d_1, d_2, C\}.$
- 3. $\{1, 2, 3, 4\}, \{s_1, s_2, s_3, s_4\}, \{m_1, m_2\}, \{d_1, d_2\}, \{C\}, \{P_1, P_2, P_3, P_4\}$
- 7. A transitive G-set has just one orbit.
- **9. a.** $\{s_1, s_2, s_3, s_4\}$ and $\{P_1, P_2, P_3, P_4\}$
- 13. b. The set of points on the circle with center at the origin and passing through P**c.** The cyclic subgroup $\langle 2\pi \rangle$ of $G = \mathbb{R}$
- 17. a. $K = g_0 H g_0^{-1}$.
 - **b.** Conjecture: H and K should be conjugate subgroups of G.