- 11. R/R and $R/\{0\}$ are not of real interest because R/R is the ring containing only the zero element, and $R/\{0\}$ is isomorphic
- 13. \mathbb{Z} is an integral domain. $\mathbb{Z}/4\mathbb{Z}$ is isomorphic to \mathbb{Z}_4 , which has a divisor 2 of 0.
- **15.** $\{(n, n) \mid n \in \mathbb{Z}\}$. (Other answers are possible.)
- **31.** The nilradical of \mathbb{Z}_{12} is $\{0, 6\}$. The nilradical of \mathbb{Z} is $\{0\}$ and the nilradical of \mathbb{Z}_{32} is $\{0, 2, 4, 6, 8, \cdots, 30\}.$
- **35.** a. Let $R = \mathbb{Z}$ and let $N = 4\mathbb{Z}$. Then $\sqrt{N} = 2\mathbb{Z} \neq 4\mathbb{Z}$ **b.** Let $R = \mathbb{Z}$ and let $N = 2\mathbb{Z}$. Then $\sqrt{N} = N$.

SECTION 27

- 1. $\{0, 2, 4\}$ and $\{0, 3\}$ are both prime and maximal.
- 3. $\{(0,0),(1,0)\}$ and $\{(0,0),(0,1)\}$ are both prime and maximal.
- 7. 2 **9.** 1, 4 **15.** $2\mathbb{Z} \times \mathbb{Z}$ **17.** $4\mathbb{Z} \times \{0\}$
- 19. Yes. $x^2 6x + 6$ is irreducible over \mathbb{Q} by Eisenstein with p = 2.
- **21.** Yes. $\mathbb{Z}_2 \times \mathbb{Z}_3$
- 23. No. Enlarging the domain to a field of quotients, you would have to have a field containing two different prime fields \mathbb{Z}_p and \mathbb{Z}_q , which is impossible.

SECTION 28

- 1. $-3x^3 + 7x^2y^2z 5x^2yz^3 + 2xy^3z^5$ 3. $2x^2yz^2 2xy^2z^2 7x + 3y + 10z^3$ 5. $2z^5y^3x 5z^3yx^2 + 7zy^2x^2 3x^3$

- 7. $10z^3 2z^2y^2x + 2z^2yx^2 + 3y 7x$ 9. $1 < z < y < x < z^2 < yz < y^2 < xz < xy < x^2 < z^3 < yz^2 < y^2z < y^3 < xz^2 < xyz <$ 11. $3y^2z^5 - 8z^7 + 5y^3z^3 - 4x$ 12. $(y^5 + y^3, y^3 + z, x - y^4)$ 13. $3yz^3 - 8xy - 4xz + 2yz + 38z^3 - 4xz^3 + 3yz^3 - 4xz^3 - 4xz^$

The algebraic variety is $\{(1, 3), (-\frac{1}{2}, 6)\}$.

25. $\{x + y, y^3 - y + 1\}$

The algebraic variety consists of one point (a, -a) where $a \approx 1.3247$.

e. T

- 27. a. T c. T
- g. T

SECTION 29

- 1. $x^2 2x 1$ 3. $x^2 2x + 2$
- 5. $x^{12} + 3x^8 4x^6 + 3x^4 + 12x^2 + 5$ 7. $Irr(\alpha, \mathbb{Q}) = x^4 \frac{2}{3}x^2 \frac{62}{9}$; $deg(\alpha, \mathbb{Q}) = 4$
- 9. Algebraic, $deg(\alpha, F) = 2$
- 11. Transcendental
- 13. Algebraic, $deg(\alpha, F) = 2$
- 15. Algebraic, $deg(\alpha, F) = 1$
- 17. $x^2 + x + 1 = (x \alpha)(x + 1 + \alpha)$ 23. a. T c. T e. F g. F
- **25. b.** $x^3 + x^2 + 1 = (x \alpha)(x \alpha^2)[x (1 + \alpha + \alpha^2)]$
- 27. It is the monic polynomial in F[x] of minimal degree having α as a zero.