SECTION 49

1. The identity map of E onto E;

 τ given by $\tau(\sqrt{2}) = \sqrt{2}, \tau(\sqrt{3}) = -\sqrt{3}, \tau(\sqrt{5}) = -\sqrt{5}$

3. τ_1 given by $\tau_1(\sqrt{2}) = \sqrt{2}$, $\tau_1(\sqrt{3}) = \sqrt{3}$, $\tau_1(\sqrt{5}) = -\sqrt{5}$;

 τ_2 given by $\tau_2(\sqrt{2}) = \sqrt{2}, \tau_2(\sqrt{3}) = -\sqrt{3}, \tau_2(\sqrt{5}) = \sqrt{5};$

 au_3 given by $au_3(\sqrt{2}) = -\sqrt{2}$, $au_3(\sqrt{3}) = \sqrt{3}$, $au_2(\sqrt{3}) = \sqrt{5}$; au_4 given by $au_4(\sqrt{2}) = -\sqrt{2}$, $au_4(\sqrt{3}) = -\sqrt{3}$, $au_4(\sqrt{5}) = -\sqrt{5}$

5. The identity map of $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$ into itself;

 τ_1 given by $\tau_1(\alpha_1) = \alpha_1$, $\tau_1(\sqrt{3}) = -\sqrt{3}$ where $\alpha_1 = \sqrt[3]{2}$;

 τ_2 given by $\tau_2(\alpha_1) = \alpha_2$, $\tau_2(\sqrt{3}) = \sqrt{3}$ where $\alpha_2 = \sqrt[3]{2}(-1 + i\sqrt{3})/2$;

 τ_3 given by $\tau_3(\alpha_1) = \alpha_2, \, \tau_3(\sqrt{3}) = -\sqrt{3};$

 τ_4 given by $\tau_4(\alpha_1) = \alpha_3$, $\tau_4(\sqrt{3}) = \sqrt{3}$ where $\alpha_3 = \sqrt[3]{2}(-1 - i\sqrt{3})/2$;

 τ_5 given by $\tau_5(\alpha_1) = \alpha_3$, $\tau_5(\sqrt{3}) = -\sqrt{3}$;

7. **a.** $\mathbb{Q}(\pi^2)$ **b.** τ_1 given by $\tau_1(\sqrt{\pi}) = i\sqrt{\pi}$, τ_2 given by $\tau_2(\sqrt{\pi}) = -i\sqrt{\pi}$

SECTION 50

1. 2

3. 4 5. 2

7. 1

13. $1 \leq [E:F] \leq n!$

15. Let $F = \mathbb{Q}$ and $E = \mathbb{Q}(\sqrt{2})$. Then

$$f(x) = x^4 - 5x^2 + 6 = (x^2 - 2)(x^2 - 3)$$

has a zero in E, but does not split in E.

23. a. 6

SECTION 51

1. $\alpha = \sqrt[6]{2} = 2/(\sqrt[3]{2}\sqrt{2}).\sqrt{2} = (\sqrt[6]{2})^3, \sqrt[3]{2} = (\sqrt[6]{2})^2$. (Other answers are possible.)

3. $\alpha = \sqrt{2} + \sqrt{3}$. $\sqrt{2} = (\frac{1}{2})\alpha^3 - (\frac{9}{2})\alpha$, $\sqrt{3} = (\frac{11}{2})\alpha - (\frac{1}{2})\alpha^3$. (Other answers are possible.)

7. $f(x) = x^4 - 4x^2 + 4 = (x^2 - 2)^{\frac{2}{2}}$. Here f(x) is not an irreducible polynomial. Every irreducible factor of f(x) has

15. b. The field Fc. $F[x^P]$

SECTION 52

1. $\mathbb{Z}_3(y^3, z^9)$ **3.** $\mathbb{Z}_3(y^4, z^2)$

5. a. F c. F e. F g. T

SECTION 53

1. 8 3. 8 5. 4 7. 2

9. The group has two elements, the identity automorphism ι of $\mathbb{Q}(i)$ and σ such that $\sigma(i)=-i$.

11. **a.** Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = \sqrt[3]{2} \frac{-1 + i\sqrt{3}}{2}$, and $\alpha_3 = \sqrt[3]{2} \frac{-1 - i\sqrt{3}}{2}$

The maps are

 ρ_0 , where ρ_0 is the identity map;

 ρ_1 , where $\rho_1(\alpha_1) = \alpha_2$ and $\rho_1(i\sqrt{3}) = i\sqrt{3}$;