
GRAPH THEORY Q & A

I think I did not understand very well isomorphic graphs; espe-
cially, I don’t get how we can intuitively conceptualize these?

First let’s make a rigorous definition

Definition 0.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. A graph
isomorphism is a bijection φ : V1 → V2 such that u1v1 ∈ E1 if and only if
φ(u1)φ(v1) ∈ E2.

First, the idea of a graph is a set together with a binary relation. The
set is the set of vertices V and the binary relation on the elements of V is
determined by the set of edges E. We can think that two elements u, v of
V are related if and only if there is an edge uv ∈ E.

Two finite sets are isomorphic whenever there is a bijection between the
sets, and this is equivalent to the sets being of the same size. Sets do not
have much structure to preserve! When we have the extra structure on a
set, like a binary relation (or in the case of groups, multiplication etc) we
want the notion of isomorphism to preserve this extra structure, which is
what is required in the definition above.

With this intuition in mind, can you adapt the definition of graph iso-
morphism above to get a definition of an oriented graph isomorphism?

A good exercise to help understand graph isomorphisms is to ask yourself
how would you check if two graphs G1 and G2 are isomorphic? (I am also
bringing this up because the graph isomorphism problem is in NP by so far
no known polynomial time algorithm is known, so it serves as a warm up to
the questions below).

First you need to determine if |V1| = |V2|. If not, then there cannot be a
bijection between the vertex sets and the graphs cannot be isomorphic. If the
vertex sets are of the same size, we would in principle need to run through the
possible bijections between V1 and V2 until we find one that sends edges of
G1 to edges of G2. If there is no such bijection the graphs are not isomorphic.
There are n! bijections between the vertex sets if n = |V1| = |V2|.

Of course there could be some short cuts. If the degree sequences of the
graphs are different the graphs cannot be isomorphic. Since if φ(v1) = v2
for some graph isomorphism φ then d(v1) = d(v2). To prove this use φ to
construct a bijection between the sets {u1 | u1v1 ∈ E1} and {u2 | u2v2 ∈
E2}. If the degree sequences of the two graphs are the same, when running
through all bijections between V1 and V2 we can restrict to those which
satisify d(v1) = d(φ(v1)). If the graphs are both k-regular though, there
are no such short cuts. The above approach to determining whether two
graphs are isomorphic leads to an algorithm which is not polynomial in the
number of vertices, it is of complexity at least O(n!). After some back and

1



2 GRAPH THEORY Q & A

forth, the best known algorithm for the graph isomorphism problem is quasi-
polynomial of order 2O(logn)c for some c (we did not study this, so consider
it trivia).

On the other hand if you have two graphs and I give you a candidate for
an isomorphism φ : G1 → G2, it is rather fast to check if the two graphs
are isomorphic. You can write down the adjacency matrices for the two
graphs with rows and columns of the matrices indexed according to the
isomorphism. Then φ is an isomorphism if and only if the two matrices are
identical. Hence a solution can be verified in polynomial time and the graph
isomorphism problem is NP. It is not known whether this problem is NP
complete (see more below).

When we made the link between the connected components of a
graph G and Null(BT

G) with BT
G being the transpose of the adjacency

matrix. I think I did not understand very well what we did in the
proof; could you give some conceptual hints so that I can better
see what we did please?

Recall that the adjacency matrix BG of a graph is a |V |×|E| sized matrix
of 0’s and 1’s with bie = 0 if i is not a vertex of an edge e and bie = 1 if i is
a vertex in the edge e. When we used linear algebra and maps to determine
the number of connected components we needed to use the adjacency matrix
of the oriented graph coming from any choice of orientation on the edges of

G. I will let
−→
G denote a fixed oriented graph coming from an arbitrary fixed

orientation of the edges of G. What we do below will work for no matter
which orientation you choose!

The adjacency matrix of an oriented graph is the |V | × |E| matrix B−→
G

consisting of 0’s 1’s and −1’s. The entries are given by:
If i is the start vertex of an edge e we set bie = −1.
If i is the end vertex of an edge e we set bie = 1.
If i is not a vertex of an edge e we set bie = 0.
A matrix B of size n×k gives a map between the vector spaces B : Rk →

Rn. The map is simply B(x) = Bx ∈ Rn for x ∈ Rk. When we take the

matrix BT−→
G

we get a map from R|V | → R|E|. How can we intuitively think

of this map and the vector spaces R|V | and R|E| in terms of the graph?
A vector in R|V | can be thought of as an assignment of a real number

to each vertex of the graph. You can think of this as a sort of weight.
Equivalently, and element (y1, . . . , yn) ∈ R|V | can be thought of as a function
f : V → R defined by f(vi) = yi. Analogously, an element (x1, . . . , xq) ∈
R|E| can be thought of as a function g : E → R, defined by g(ei) = xi.
Alternatively, you can think of xi as the assignment of a weight (real number)
to the edge ei. With this interpretation in mind, the matrix BT−→

G
gives us

a way of transforming a function on the vertices of G to functions on the
edges of G. This “transformation” depends on the way we chose to orient
the edges. The map BT−→

G
: R|V | → R|E|, given by matrix vector multiplication

can then be written down as:



GRAPH THEORY Q & A 3

BT−→
G

((y1, . . . , yn)) = (x1, . . . , xq)

where xi = yij − yik if the oriented edge ei has start vertex uik and end
vertex uij . In other words, if you have a weights on the vertices, you can
assign weights to edges of G by prescribing the weight of an edge to be the
weight of the end vertex minus the weight of the start vertex.

We now want to find which vectors in R|V | are sent to 0 by this map.
For a (y1, . . . , yn) to be sent to zero under the map, the weight which it
produces on each edge must be zero. In particular, for each edge we have
to have yij = yik , where uik and uij are its vertices. Therefore, vertices
which are connected by an edge must have the same values of yi’s, and by
transitivity any vertices connected by a path must also have the same values
of yi’s. Therefore, (y1, . . . , yn) ∈ Null(BT−→

G
) if and only if the entries of the

vector y are constant on the vertices contained in the connected components
of G.

For each connected component ofG, we can cook up a vector inNull(BT−→
G

),

namely the vector that has entry 1 for any vertex in the connected compo-
nent and 0’s everywhere else. These vectors form a basis of Null(BT−→

G
), so

dimNull(BT−→
G

) is equal to the number of connected components. It is prob-

ably best to go back at this point (or even before this) and look at the
examples in the PDF from the oriented graph day!

Could we go a little deeper regarding NP-completeness or could
you direct me toward some videos that explain it? I tried to find
such things but I found nothing very relevant and I would like
to better visualize what it is as it seems a very important and
interesting topic.

Angaende P, NP, og NP-komplette problemer lurte jeg pa om
du kunne forklare hvordan man viser/vet at et problem er NP-
komplett og ikke bare ”vanlig” NP?

Let’s review the main classes of problems we studied in this context. First
we had P problems, these are problems for which there exists a polynomial
time algorithm to solve then. Next, a problem is in NP if there exists a
polynomial time algorithm to verify a proposed solution. The abbreviation
NP is for “non-deterministic polynomial”. Given a problem Π we say write
Π ∈ P if there is a polynomial time algorithm for Π, similarly Π ∈ NP if
there exists a polynomial time algorithm for verifying a potential solution
to Π.

Just because we don’t know a polynomial time algorithm for a fixed prob-
lem (or its verification), doesn’t mean that one doesn’t exist! For example, it
was only in 2002 that Agrawal, Kayal, and Saxena showed that determining
if a number is prime is in P . Their paper is here.

Any problem that is in P is also in NP , since to verify a possible solution,
you could use the polynomial time algorithm to first solve the problem and

https://annals.math.princeton.edu/2004/160-2/p12


4 GRAPH THEORY Q & A

then compare your solution to the one you had to check. If we think of P
and NP as collections of problems then P ⊆ NP .

The question of whether or not P = NP is considered one of the hardest
problems in mathematics and is certainly one of the most important prob-
lems in complexity theory. For example, if P = NP it would mean that
there is a polynomial time algorithm for factoring integers since verifying
a potential factorisation requires only multiplication and multiplication is
polynomial complexity. If we think about RSA and other encryption proto-
cols, we see that the question has real world implications to data security.

Then there were the NP complete problems. These are the problems
that are the hardest among the NP problems. More precisely, a problem
Π is NP complete if Π ∈ P implies Π′ ∈ P for all other Π′ ∈ NP . So if
any NP -complete problem is in P , then we would have P = NP . Therefore
these problems are the ones of significant interest.

The way to show that an NP problem Π is in fact in the NP -complete
club, is to find a known NP complete problem Π′ and show that if you can
solve Π in polynomial time you can solve Π′ in polynomial time. In a sense,
reduce Π′ to Π in polynomial time. This approach clearly only works if you
already have some NP -complete problems laying around.

The first ever problem that was shown to be NP -complete is the Boolean
satisfiability problem (SAT). This problem asks, given a Boolean expression
can you find a substitution of all of the variables as TRUE/FALSE so that
the expression evaluates to be true? The Cook-Levin Theorem from the
1970’s proves that the Boolean satisfiability problem is NP complete. The
idea of the proof is to show that from any problem in NP can be reduced
to a Boolean satisfiability problem.

Known NP complete problems that we have seen sides of in the course are
the traveling salesman problem, Hamiltonian path problem, the subgraph
isomorphism problem (the graph isomorphism problem is in NP, but not
known to be NP complete), graph coloring problem, and determining a
vertex cover.

K Shaw, Department of Mathematics, University of Oslo, P.O box 1053,
Blindern, 0316, Oslo, Norway krisshaw@math.uio.no


