
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT2250 –– Discrete Mathematics

Day of examination: Wednesday 2. June 2021

Examination hours: 9:00 – 13:00

This problem set consists of 7 pages.

Appendices: none

Permitted aids: all

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Justification must be provided for all solutions. Solutions can be
submitted in English or Norwegian. The format may be in Latex or as
scanned handwritten notes.

Problem 1

Consider the traveling salesperson problem (TSP) on the following graph
where the number on an edge indicates its weight.
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1. (5 points) Is this a metric TSP?

Solution

A TSP is metric if for all triples of distinct vertices i, j, k we have
wij ≤ wik + wkj . The above TSP is not metric since wbc = 4, yet
wab + wac = 2 + 1 = 3 so wbc > wab + wac.

Other solutions are possible! For example wed > wad + wae.

2. (20 points) Run the Christofides heuristic to provide a route for a
traveling salesperson. Explain each step of the heuristic and name the
graph algorithms that you use as they arise.

(Continued on page 2.)
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Solution
Step 1: Run Kruskal’s algorithm to find a minimal spanning tree. The

tree has edges a− b, a− c, a− d, a− e.
Step 2: Build complete graph on vertices of odd degree and find a

maximal matching with minimal weight. The graph is the complete graph
on b, c, d, e and the matching to be found is b − e c − d. We didn’t learn a
matching algorithm for Kn, only for Kn,n. Here the matching is found by
brute force.

Step 3: Add these edges to T to obtain an Eulerian multigraph. Use
Algorithm 8.2 from Aigner to produce an Eulerian circuit. There are many
possibilities here.

Step 4: The Eulerian circuit “contains" a Hamiltonian cycle. This
is found by following the skipping over vertices that would otherwise be
repeated. (The solution unfortunately cannot be unique).

Grading There were 5 points for each step. If the explanations were
weak or the algorithm of a step was not mentioned 1-2 were removed.

Problem 2

1. (5 points) Consider the 2-design with v = 7 and b = 7 consisting of
the blocks

B = {{124}, {137}, {156}, {235}, {267}, {346}, {457}}.

Write down the v × b incidence matrix of the 2-design.

Solution

Index the rows of a 7×7 matrix with the elements 1, . . . , 7 in increasing
order and the columns of the matrix by the blocks as they appear in
the list. Then the incidence matrix for the design is:



1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 0 0 0 0 1 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0
0 1 0 0 1 0 0


2. (10 points) Show that the columns of the incidence matrix of an

arbitrary t-design (S,B) with parameters v, k ∈ Z≥1 and λ = 1 give
a code C ⊆ {0, 1}v with |C| = |B| and satisfying d(C) ≥ 2(k − t + 1)
when |B| ≥ 2.

Solution

The columns of the incidence matrix give a set C of |B| vectors in
{0, 1}v. Denote the vector in C ⊂ {0, 1}v corresponding to the block
Bi by bi. Each code word bi has weight w(bi) = k.

The distance of a code C is defined as

d(C) = min
bi,bj

∆(bi, bj),

(Continued on page 3.)
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where the minimum is over distinct bi, bj . Therefore, we need to bound
the Hamming distance of the vectors of two distinct blocks bi and bj .

∆(bi, bj) = {k | bik 6= bjk} = |{k | k ∈ Bi ∪Bj and k 6∈ Bi ∩Bj}|.

In other words ∆(bi, bj) is the size of the symmetric difference of Bi and
Bj , namely ∆(bi, bj) = |(Bi ∪Bj)\(Bi ∩Bj)|. By inclusion-exclusion

|Bi ∪Bj | = |Bi|+ |Bj | − |Bi ∩Bj |.

and therefore,

|(Bi ∪Bj)\(Bi ∩Bj)| = |Bi|+ |Bj | − 2|Bi ∩Bj |

Each Bi has the same size, namely |Bi| = |Bj | = k, so it remains to
bound the size of Bi ∩Bj .

We claim that |Bi ∩ Bj | ≤ t − 1. Since B is a t-design with λ = 1,
every subset of size t is contained in exactly one block. Therefore,
|Bi∩Bj | ≥ t then there is a subset of size t contained in the two blocks
contradicting λ = 1. The claim is proved.

Combining this into the inequality we obtain: ∆(bi, bj) ≥ 2(k − t+ 1)
for all bi 6= bj ∈ C and therefore d(C) ≥ 2(k − t+ 1).

Grading The key here was to use that λ = 1. Maybe people wrote
arguments that didn’t use this these were incomplete/misleading proofs
and received up to 6 points depending on what other details were
included.

3. (10 points) For a ∈ {0, 1}n find and prove a formula for the number of
points in

Bt(a) = {b ∈ {0, 1}n | ∆(a, b) ≤ t} ⊆ {0, 1}n

where ∆(a, b) denotes the Hamming distance between a and b and
t ∈ Z≥0.
Use inclusion-exclusion to determine the number of points in

B1((0, 0, 0)) ∪B1((1, 0, 0)) ∪B1((0, 1, 0)).

Solution

For the number of points in the ball of radius t about a we can partition
the set Bt(a) into disjoint subsets:

Bt(a) =
t⊔

i=0

{b ∈ {0, 1}n | ∆(a, b) = i}.

Using the summation law we have

|Bt(a)| =
t∑

i=0

|{b ∈ {0, 1}n | ∆(a, b) = i}|.

(Continued on page 4.)



Exam in MAT2250, Wednesday 2. June 2021 Page 4

To determine the size of the set Ai = {b ∈ {0, 1}n | ∆(a, b) = i}, notice
that there is a bijection

f : Ai → {i-subsets of size of {1, . . . , n}}.

For an element b ∈ Ai we assign the subset f(b) = {j | aj 6= bj}.
The inverse is then f−1(I) = a+ vI , where vI is the vector defined by
vIi = 1 if i ∈ I and vIi = 0 otherwise. By the rule of equality we obtain
|Ai| =

(
n
i

)
. Combining this with the summation rule above we have:

Bt(a) =

t∑
i=0

(
n

i

)
.

For the second task, we use inclusion-exclusion to determine the
number of points in

A = B1((0, 0, 0)) ∪B1((1, 0, 0)) ∪B1((0, 1, 0)).

|A| = |B1((0, 0, 0))|+ |B1((1, 0, 0))|+ |B1((0, 1, 0))|

−|B1((0, 0, 0))∩|B1((1, 0, 0))|−|B1((0, 0, 0))∩B1((0, 1, 0))|−|B1((1, 0, 0))∩B1((0, 1, 0))|

+|B1((0, 0, 0)) ∩B1((1, 0, 0)) ∩B1((0, 1, 0))|

By our above calcuation each ball B1(v) ⊂ {0, 1}3 contains exactly 4
points. Moreover we have:

B1((0, 0, 0)) ∩ |B1((1, 0, 0)) = {(0, 0, 0), (1, 0, 0)}
B1((0, 0, 0)) ∩ |B1((0, 1, 0)) = {(0, 0, 0), (0, 1, 0)}
B1((1, 0, 0)) ∩ |B1((0, 1, 0)) = {(1, 1, 0), (0, 0, 0)}
Lastly we see that B1((0, 0, 0))∩B1((1, 0, 0))∩B1((0, 1, 0)) = (0, 0, 0).
Combining this and the above inclusion-exclusion formula we obtain:

B1((0, 0, 0)) ∪B1((1, 0, 0)) ∪B1((0, 1, 0)) = 3 · 4− 3 · 2 + 1 = 7.

Grading The most common thing here was a not very well justified or
explained counting argument for the number of points in the ball (1 to 2
points were removed for lack of justification). I was looking for things like
the summation rule (breaking a set into disjoint subsets and counting parts),
and the rule of equality (finding a bijection with words of distance exactly t
and subsets of size t).

Problem 3

1. (5 points) Let C ⊂ {0, 1}5 be the binary linear code

C = {00000, 11100, 11111, 00011}.

Write down a generating matrix for C.

Solution

(Continued on page 5.)
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Since |C| = 4 = 22 the dimension of C is 2 so the generating matrix
is a 2 × 5 matrix consisting of two linearly independent vectors in C.
For example,

G =

(
1 1 1 0 0
1 0 0 1 1

)
There are other solutions possible. As rows of the matrix you can take
two any non-zero elements of C.

2. (10 points) Let C ⊂ {0, 1}8 be the binary cyclic code of dimension 4
with generating polynomial:

g(x) = x4 + 1.

While using the above cyclic code, you receive the transmission
(0, 1, 1, 0, 1, 1, 1, 0) ∈ {0, 1}8. Use the fact that the code is cyclic to
show that an error has occurred.

Solution

The element b = (0, 1, 1, 0, 1, 1, 1, 0) ∈ {0, 1}8 translates to the
polynomial

b(x) = 0x7 + x6 + x5 + 0x4 + x3 + x2 + x+ 0.

Then b ∈ C if and only if b(x) = g(x)a(x) for some polynomial a(x).
Since deg g(x) = 4 and deg b(x) = 6 the degree of the polynomial
a(x) is would have to be two. Letting a(x) = x2 + a1x + a0 we can
attempt to solve for a1, a0. a(x)g(x) = (x2 + a1x + a0)(x

4 + 1) =
x6 + a1x

5 + a0x
4 + x2 + a1x + a0. It is impossible for a product of

the above form to be equal to b(x) since there is no degree 3 term.
Therefore, b(x) 6= g(x)a(x) for some a(x), and b is not in C and an
error has occurred.

Alternatively, perform polynomial long division and see that a
remainder of x3 is obtained. If a polynomial calculator was used as
an aid without explanation of which one, 1 to 2 points were deducted.

Some people used error detection for linear codes (syndromes). I didn’t
deduct any marks as long as it was done correctly.

3. (10 points) Show that the cyclic code from Problem 3.2 is self-dual,
namely that C = C⊥.

Solution

The dual code is defined by

C⊥ = {b ∈ {0, 1}8 | b · c = 0∀c ∈ C}.

Firstly, both dimC = 4 and dimC⊥ = 8−dimC = 4. Therefore, both
codes have the same dimension.

To show that C ⊂ C⊥ it is sufficient to verify that bi · bj = 0 for all
pairs i, j (possibly equal) where b1, . . . , b4 is a basis of C.

(Continued on page 6.)
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For a basis of C we can take the vectors b1, . . . , b4 coming from the
polynomials x4 + 1, x(x4 + 1), x2(x4 + 1), and x3(x4 + 1). These
translate to vectors:

(0, 0, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0)

It is easily verified that the inner product of any two distinct vectors
above is 0. The inner product of any vector above with itself is also 0
since there are an even number of 1’s in each vector.

Now since dimC = dimC⊥ the fact that C ⊂ C⊥ lets us conclude that
|C| = |C⊥| and hence that C = C⊥.

Alternative solution

First find a basis for C exactly in the solution above. There is a
description of the parity check matrix H of C from Aigner. The parity
check matrix of C is the generating matrix of C⊥. In order to write
down the parity check matrix we must perform polynomial division to
obtain:

x8 − 1 = (x4 + 1)(x4 + 1)

Writing down a parity check matrix for C using the polynomial
h(x) = x4 + 1 following Aigner, gives us a basis a1, . . . , a4 of C⊥.
This basis is exactly the same (up to reordering) as the basis b1, . . . , b4
found for C above. The two linear codes have equal bases therefore
they are the same, C = C⊥.

Grading Some students used a problem from a practice exam
which states that the check polynomial of the dual code is related
to h(x). I was somewhat ok with this but deducted some marks if the
explanations. Some stated that h(x) was the check polynomial, which
is not correct. Some marks were deducted for this.

Problem 4

1. (5 points) Solve the discrete logarithm problem

3 ≡ 7x mod 11

for x ∈ {0, 1, . . . , 10}.
We know from page 313 of Aigner that 7 is a primitive root mod 11,
so the discrete logarithm problem has a solution. We can also use the
table from the same page of Aigner where the powers of 7 mod 11 are
computed to see that 3 ≡ 74 mod 11.

Alternatively, we can compute powers of 7 mod 11. Firstly, 72 = 49 ≡ 5
mod 11, then 73 ≡ 5 · 7 ≡ 2 mod 11 and 74 ≡ 5 · 5 ≡ 3 mod 11.

2. (5 points) Find an a ∈ {2, 3, 4} and a y ∈ Z5 such that

y ≡ ax mod 5

does not have a unique solution for x ∈ {0, 1, 2, 3}.

(Continued on page 7.)
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The above discrete logarithm problem has a unique solution whenever
a is a primitive root mod 5. In the above list only a = 4 is not a
primitive root mod 5.

We compute the powers of 4 mod 5 to see that: 41 ≡ 4 mod 5,
43 ≡ 442 ≡ 1 mod 5, 43 ≡ 4 mod 5 44 ≡ 1 mod Therefore, 42 ≡ 44

mod 5 and the discrete logarithm does not have a unique solution for
a = 4 and y = 4.

Grading There was a typo in the statement that was only corrected
with about an hour left of the exam. The typo just made the problem
easier to solve. No deductions were made if the easier solution was
given as long as it was well explained.

3. (15 points) Alice and Bob exchange encrypted messages using the
RSA protocol. However, Eve and Iver set out to interfere with the
transmission. Using Alice’s public key n = 187 and k = 7, Bob sends
an encrypted message to Alice asking if she wants to meet.

• First Eve cracks Alice’s private key by factoring n = 187. Find
Alice’s private key using the same method as Eve.
First Eve factors n = 187 = 11 · 17. In the notation for RSA we
have p = 11 and q = 17. Alice’s public key k = 7 is relatively
prime to (p − 1)(q − 1) = 10 · 16 = 160. Alice’s private key is
a number g such that kg ≡ 1 mod 160. We can find this by
brute force (guessing and checking) or by running the Euclidean
algorithm in reverse. We find that 23 · 7 = 161 ≡ 1 mod 160.
Therefore, Alice’s secret key is 23.

• Using the private key they decode the message, then using Bob’s
public key n′ = 221 and k′ = 5, Iver poses as Alice and encrypts
the message "NO" using the encoding N = 14, O = 15. What
numbers does Iver send to Bob?

For RSA encryption, Iver must use Bob’s public key to encrypt the
message by computing T k′ mod n′ where T is the text. Therefore,
Iver sends the numbers 131, 19 since:

145 = 131 mod 221

155 = 19 mod 221

Problem 5

(10 points) Provide an example of where we borrowed tools from other areas
of mathematics (for example, linear algebra, analysis, or abstract algebra)
to solve discrete problems. Describe how the theorem/fact/construction
borrowed from the other area produced results about discrete objects.

Grading There were many solutions here. Common ones were linear
algebra and finite fields. If the solution did not point to why the connections
to other fields had about 4 points deducted depending on the quality of the
other explanations. Otherwise most solutions received between 8 − 10 as
long as they didn’t contain any incorrect statements.


