
ENUMERATIVE COMBINATORICS Q & A

(1) How do we see which method one should use to find out
something about f(n)?

This is a great question and a very difficult one to answer, but I
will give it a shot. The point is that there is not always a straight
path (aka algorithm) to determining a sequence or even figuring
something out about it. As a general rule, always try to write down
the first few terms. This is good to do even if you end up finding
a formula for f(n). In which case you should always go back and
“sanity check” (compare your formula to your first calculations).

We’ve seen many techniques to investigate sequences and often
times we will need more than one of these when analysing just one
sequence:
(a) Summation Formula
(b) Product Formula
(c) Bijection
(d) Induction
(e) Recurrence
(f) Inversion
(g) Inclusion-Exclusion
(h) Generating Functions and Partial Fraction Decomposition
(i) Exponential Generating Functions
(j) Asymptotic analysis

Often the methods to try first depend on how the sequence is
delivered to us. Here are some guidelines to help (they are guidelines
not rules!)

Is it an enumerative problem? For instance, the number of bi-
nary words satisfying conditions, or the number of subsets satisfying
conditions. Then most often we have used a combination of sum-
mation and bijection to determine a recurrence relation. Sometimes
obtaining a recurrence is as far as we can get, like with the Stirling
numbers for instance. But if you have a recurrence relation you can
try to proceed to the next step. Inclusion-Exclusion was also a tool
we used to answer enumerative problems and actually we can think
of this as a stronger version of the summation formula. The summa-
tion formula tells us how to count a set when it can be partitioned
into disjoint subsets. If you can write a set as a union of subsets
which are not disjoint, you can try to determine the size of the set
using inclusion-exclusion. This requires controlling the sizes of the
subsets and all of their intersections.

Is the sequence given as a recurrence? If you can make a decent
guess at the formula then you can try to go ahead and prove it using
induction. It isn’t always possible to guess though, take for example
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the closed formula for the Fibonacci numbers (good luck guessing the√
5’s and the golden ratios). Depending on the recurrence formula

we could sometimes go further using generating functions and partial
fractions and get a closed formula. For example, you can check if
your sequence fits the template in Theorem 3.1.

If you have non-constant coefficients in the recurrence, sometimes
you can still get lucky and the generating function might be a ratio-
nal function (a quotient of two polynomials). If the recurrence has
non-constant coefficients (depending on n) and in solving for the
generating function you get stuck, it’s worth giving the exponential
generating function a try. Sometimes even with a generating func-
tion we can’t get an explicit formula, take for instance the number
of integer partitions of n.

Can you find a formula for another known sequence g(n) in terms
of f(n)? Here is a good place to try out the black magic of inversion!

Sometimes it’s difficult to say much of anything precise about a
sequence. In this situation, you might still be able to figure out
something about the asymptotic behaviour. For example, Theorem
5.2 gives us asymptotic estimates for recurrences of the form T (n) =
aT (n/b) + f(n) and T (1) = c, without giving us a means of solving
these recurrences for any choice of a, b, c, and fn. We saw how to
solve some examples, but we do not have a general method. This
theorem though we didn’t see a prove gives us a way to analyse the
asymptotics of the sequence T (n) in terms of the asymptotics of
f(n).

It’s good to keep in mind that often more than one method works!
Remember that we counted derangements using Inversion, Inclusion
Exclusion, and Exponential Generating Functions.

(2) Aigner’s exercise 1.5 (on p. 33; not listed in the weekly
exercises):

In the parliament of country X there are 151 seats and
three political parties. How many ways (i,j,k) are there of
dividing up the seats such that no party has an absolute
majority?
I still don’t see why the answer (on p. 355) is what it is.
I haven’t thought much about this since the start of the
term, but it’s still unclear.
I looked it up, and it sounds like ’integer composition’ to
me (though we haven’t had anything about that). I haven’t
managed to understand why it adds up to the binomial
coefficient we see on page 355.

You are right in that this is asking you to count “integer compo-
sitions” of 151 which satisfy a condition. Aigner calls compositions
“ordered integer partitions”.

An integer composition (ordered integer partition) of 151 is a or-
dered triple (i, j, k) such that 151 = i+ j + k. The question though
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wants the seats to be divided so that no party has a majority. This
means we want to count compositions of 151 with the additional
requirement that i, j, k ≤ 75. Let the set of such compositions be
denote by A. Let Ai ⊂ A denote the subset of compositions whose
first entry is fixed to be i. Then, A = t75i=1Ai.

Now use the summation technique, so find the size of Ai and sum.
In Ai, the first entry of the composition is fixed, and so a choice of
j determines the composition since, k = 151 − i − j. Moreover, we
have j ≤ 75 and k = 151 − i − j ≤ 75. The last inequality gives
j ≥ 76 − i. Therefore, 76 − i ≤ j ≤ 75 and hence there are only i
possibilities for j and |Ai| = i. Then |A| =

∑7
i=1 5i =

(
76
2

)
.

(3) I do not understand theorem 5.2. Especially, I did not
understand the examples, the way we should be able to
apply it.

Theorem 5.2 gives us asymptotic estimates for sequences defined
by recurrences of the form T (n) = aT (n/b) + f(n) and T (1) = c.
It may not be possible to solve such recurrences explicitly, but the
theorem tells us that we can still say something about the asymptotic
behaviour. You are right that there are examples of recurrences that
Aigner solves explicitly and we never went back and looked at them
in the context of the Theorem 5.2, which appears after.

To apply the Theorem 5.2 we have to analyse the asymptotics of
f(n) and ask if:

(a) f(n) ∈ O(nlogb(a)−ε)?

(b) f(n) ∈ Θ(nlogb(a))?

(c) f(n) ∈ Ω(nlogb(a)+ε)?
Let’s look at T (n) = T (n/2) + 1 from line (5.10) of Aigner. This
recurrence has a = 1, b = 2 and f(n) = 1. So logb(a) = 0, and

thus f(n) = 1 ∈ Θ(nlogb(a)). Therefore, by applying Theorem 5.2 we

can conclude that T (n) ∈ Θ(nlogb(a) lg n) which reduces to T (n) ∈
Θ(lg n). We can compare this to the solution found for the recurrence
before the statement of the theorem, which was T (n) = dlg(n)e.

Now look at T (n) = T (n/2) + n, T (1) = 0 from (5.12). Here
a = 1, b = 2 and f(n) = n. So we have logb(a) = 0 and we fall into

case 3) above. Namely, f(n) ∈ Ω(nlogb(a)+ε). To apply Theorem
5.2 we also need to check if af(n/b) ≤ cf(n) for some c < 1 and
n ≥ n0. This is true as we can take any 0.5 < c < 1 and we have
n/2 ≤ cn. Therefore, from the theorem we can conclude that T (n) ∈
Θ(n). Once again above the statement of the theorem Aigner solves
T (n) = 2n− 2 when n = 2k and argues directly that T (n) ∈ Θ(n).

Can you try to apply Theorem 5.2 for the recurrence displayed
in (5.13) and compare the conclusion with the one from the direct
calculation?

(4) Could you sum up the different formula linking Stirling
numbers, number of partitions, etc. ?
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A good way to remember the a lot of the formulae for the Stirling
numbers is to recall them to their parallels to the formulas for the
binomial coefficients. First the definitions:(

n
k

)
is the number of subsets of size k of a set of size n.

σn,k is the number of permutations of a set of size n with k cycles.
Sn,k is the number of partitions of a set of size n into k parts. First
we have the recurrences:(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
σn,k = σn−1,k−1 + (n− 1)σn−1,k

Sn,k = Sn−1,k−1 + kSn−1,k

We obtained all of these recurrences by using the summation for-
mula in different but related ways.

Then we saw the binomial theorem, which I will write just using
one variable: (x+1)n =

∑n
k=0

(
n
k

)
xk. A first Stirling number version

of this is to expand the falling factorial polynomials:

xn =

n∑
k=0

(−1)n−kσn,k.

A version of this formula follows from the definition of σn,k. Re-
member that nn = n! and by counting up permutations we get
n! =

∑n
k=0 σn,k from page 15.

We can also express xn in terms of falling factorial polynomials:

xn =

n∑
k=0

Sn,kx
k.

We had already seen the above formula before when we were counting
maps in formula (1.1).

These two polynomial formulas lead to Stirling inversion in Section
3.2.

I think the only other formula for Stirling numbers that we saw
came from counting permutations with k cycles by summing over
their types. This is on page 16 of Aigner.

σn,k =
∑

b1,...,bn

n!

b1! . . . bn!1b1 . . . nbn
,

where the sum is over (b1, . . . , bn) satisfying
∑n

i=1 ibi = n and
∑n

i=1 bi =
k.

(5) I would love a solution to 1.13 (pdf later is fine)

Let fn,k be the number of k-subsets of {1, . . . , n} containing no
adjacent numbers. Show that

a)fn,k =

(
n− k + 1

k

)
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b)
∑
k

fn,k = Fn+2

Let’s start with part a. Following the techniques from Section 1.2
of Aigner we will construct a bijection between

A = {k − subsets of {1, . . . , n} with no adjacent numbers}and

B = {k − subsets of {1, . . . , n− k + 1}}.
The set B has size

(
n−k+1

k

)
, so once we have the bijection we can

apply the rule of equality and obtain the equality in a).
To construct a bijection, f : A→ B, suppose {a1, a2, . . . , ak} ∈ A,

where the a′is are written in increasing order. Since the set has no
adjacent numbers we have ai < ai + 1 for all i. Therefore,

1 ≤ a1 ≤ a2 − 1 ≤ a3 − 2 ≤ a4 − 3 ≤ · · · ≤ ak − k + 1 ≤ n− k + 1,

which means that the {a1, a2− 1, a3− 2, a4− 3, . . . , ak − k+ 1} is in
B. Define

f({a1, a2, . . . , ak}) = {a1, a2 − 1, a3 − 2, a4 − 3, . . . , ak − k + 1}.
(Try it out on the example: {1, 3, 6, 8}).

We can write down the inverse map f−1 : B → A which is

f−1({b1, . . . , bk}) = {b1, b2 + 1, b3 + 2, b4 + 3 . . . , bk + k − 1}.

By the rule of equality we have |A| = |B| and fn,k =
(
n−k+1

k

)
.

To prove part b) we show that the sums satisfy the same recurrence
as the Fibonacci numbers. Firstly, check that for n = −2 we get∑

k f−2,k = 0 = F0 and n = −1 we get
∑

k f−1,k =
(
0
0

)
= 1 = F1.

Next, consider the sum∑
k

fn,k +
∑
k

fn+1,k =
n∑
k=0

(
n− k + 1

k

)
+
n+1∑
k=0

(
n− k + 2

k

)
(Some of the summands are zero above, like when n− k+ 1 < k but
that’s no big deal).

Now do a change of variables in the first sum to start the summa-
tion indexing at k = 1.

∑
k

fn,k +
∑
k

fn+1,k =

n+1∑
k=1

(
n− k + 2

k − 1

)
+

n+1∑
k=0

(
n− k + 2

k

)

=

n+1∑
k=1

(
n− k + 2

k − 1

)
+
n+1∑
k=1

(
n− k + 2

k

)
+

(
n+ 2

0

)
Applying the recurrence relation for the binomial coefficients we ob-
tain:

∑
k

fn,k +
∑
k

fn+1,k =

n+1∑
k=1

(
n− k + 3

k

)
+

(
n+ 2

0

)
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Since
(
n+2
0

)
=
(
n−0+3

0

)
we can write this as a sum from zero.∑

k

fn,k +
∑
k

fn+1,k =
n+1∑
k=0

(
n− k + 3

k

)
=
∑
k

fn+3,k.

Therefore, the sums
∑

k fn,k obey the same recurrence defining the
Fibonacci numbers and we have

∑n
k=0 fn,k = Fn+2.

(6) I’m perhaps a bit late with wishes for the the session today,
but here goes: Inversions is probably what I’ve struggled
most to understand so far. Would be nice with a review of
those.

As was pointed out in the zoom chat, inversions seem like black
magic. But really they are just linear algebra. Though it is al-
ways rather magical when we can import tools from various areas of
mathematics that seem completely unrelated.

Strictly speaking inversions are not exactly a counting technique,
but rather they give us a way of relating different sequences. But
they can help us out in counting problems, since if we have two
sequences related by an inversion and we have a formula for one of
the sequences, inversion can provide us with a formula for the other.
So maybe a good place to start practicing with inversion is to take
some simple sequences and see what happens under the two main
examples of inversion that we saw, binomial inversion and Stirling
inversion.

Consider the sequence un = 1 for all n and let’s apply binomial
inversion. The formula for binomial inversion is formula (2.18) of
Aigner:

vn =
n∑
k=0

(
n

k

)
uk ∀n if and only if un =

n∑
k=0

(−1)n−k
(
n

k

)
vk∀n.

So we obtain:

vn =
n∑
k=0

(
n

k

)
uk =

n∑
k=0

(
n

k

)
= 2n

since the sum of a row of the Pingalla-Pascal triangle is 2n. That
wasn’t so bad.

The statement also says that un =
∑n

k=0(−1)n−k
(
n
k

)
vk∀n. Which

means 1 =
∑n

k=0(−1)n−k
(
n
k

)
2k. This could be a surprising identity if

we didn’t already know the binomial theorem which gives a formula
for 1 = (2− 1)n.

What if you plugged in vn = 1 into the binomial inversion? Then
you get:

un =

n∑
k=0

(−1)n−k
(
n

k

)
vk

and u0 = 1 and un = 0 for n ≥ 0. So inversion is sensitive to who
you call un and who you call vn. This makes sense if we think about
the linear algebra interpretation. If A and B are inverse matrices
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of each other and Au = v then Bv = u but Av could be anything
(actually its A2 = u).

Another thing to do to warm up to inversion is to find some inver-
sion formula of your own. Any pair of basis sequences gives you an
inversion formula, but it’s not always so easy to find the connection
coefficients! For a short review on where to use inversion see the end
of the answer to the first question.
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