MATHEMATICAL LOGIC

In a nutshell, mathematics consists of definitions, theorems and proofs. Definition The introduction of a new term.

Example: "A number is even if it is divisible by 2" Theorem A mathematical, provable fact

Example: "There exists infinitely many even numbers" Proof (NO: beins) A logical argument for the validity of a theorem. Lemma A small theorem aimed to prove a trigger theorem Proporition (NO: Proposizion) A small theorem of independent interest Corollary (NO: Korollar) A theorem which follows (more or less directly) To state theorems, definitions and proofs, we will use the following rymbols: "implies" (NO: "impliserer"). "A >> B" means "if A is true then B is true". Example: n is an even number $\Rightarrow n^2$ is an even number "is implied by". "A = B" is the name as "B => A". "is equivalent to" or "if and only if" (NO: "er ekvivalent med", "hvis og bare hvis"). "A \B" means both A \B. Example: n is an even number \Rightarrow n² is an even number

"for all" (NO: "for alle"). Example: n² is even \forall even n "there exists" (NO: "let elevisterer") Example: If x is a number then \exists a number, y > x"there exists a unique" (NO: "det ekristerer en unik") Example: If x>0 then I! y>0 much that y2=x "much that"

Methods of proof In this course you will ree a lot of proofs! Some of the most common Arategies are: a) proof by induction b) proof by contradiction
c) proving the contraporitive

a) Proof by induction

Claim: Some statement P(n) is true for every $n \in \mathbb{N}$.

Strategy:

First prove P(1)

Then prove that P(n) => P(n+1),
for any n ∈ N.

Proposition:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
 for any $n \in \mathbb{N}$.

Proposition: $\sum_{k=1}^{N} k = \frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.

Proof: We have
$$\sum_{k=1}^{l} k=1$$
 and $\frac{1\cdot (1+1)}{2}=1$, so $P(1)$ is true.

 $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1)$

 $= \underbrace{\left(N+1\right)\left(N+2\right)}$

6) Proof by contradiction (reduction ad aboundum)

Strategy: To prove P, assume (not P), and reach a contradiction.

Proportion: 12 is irrational

Proof: Armune the converse - that $\sqrt{2}$ is rational. Let $p, q \in \mathbb{N}$ be such that $\sqrt{2} = \frac{p}{q}$. We may assume that p and q have no common prime factors.

Then $2 = \frac{p}{q^2} \iff p^2 = 2q^2$. Thus, p is even: p = 2r.

Therefore, $4\Gamma^2 = 2q^2 \iff q^2 = 2\Gamma^2$, no q in also even.

But p and q have no common prime factors!

c) Proving the contraporitive

Strategy: To prove $P \Rightarrow Q$, prove $(not Q) \Rightarrow (not P)$

Note: To prove $P \Leftrightarrow Q$, it is common to prove $P \gg Q$ and $(not P) \Rightarrow (not Q)$

Proposition: If nEN is much that the num of its positive divisors is n+1, then n is prime

Proof: Let $n \in \mathbb{N}$ be non-prime. Then it is divisible by 1, n, and at least one more number $\times \in \mathbb{N}$. Hence,

(run of paritire divisors) > 1+n+x > n+1.

QUESTIONS? COMMENTS?