MATHEMATICAL LOGIC

In a nutshell, mathematics consists of definition, theorems and profs.
Definition The introduction of a new term.
Example: "A number is even of it is divisible by 2 "
Theorem A mathematical, provable fact
Example: "There exists infinitely many even numbers"
Proof (NO: bevis) A logical argument for the validity of a theorem.
Lemma A small theorem aimed to prove a bigger theorem
Proportion (NO: Proposigion) A small theorem of independent interest
Corollary (No:Koollar) A theorem which follows (more
from another theorem

To state theorems, definitions and profs, we will use the following symbols:
"implies" (No: "impliserer"). "A $\Rightarrow B$ " means "if A is true then B is true".
Example: n is an even number $\Longrightarrow n^{2}$ is an even number "is implied by". "A$\Leftarrow B^{\prime \prime}$ is the name as " $B \Longrightarrow A$ ". "is equivalent to", or "if and only if" (NO: "er elevivalent med", "his vg bare his is").
" $A \Leftrightarrow B$ " means both $A \Rightarrow B$ and $A \leftarrow B$.
Example: n is an even number $\Longleftrightarrow n^{2}$ is an even number
\forall "for all" (No: "for all")
Example: n^{2} is even \forall even n
\exists "there exirts" (NO: "Let eharisterer")
Example: If x is a number then \exists a number $y>x$
"there exists a unique" (NO: "del elesisterer en univ")
Example: If $x>0$ then $\exists!y>0$ much that $y^{2}=x$
"much that"

Methods of proof
In this course you will ne a lot of proofs!
Some of the most common strategies are:
a) proof by induction
b) proof by contradiction
c) proving the contrapositive
a) Proof by induction

Claim: Some statement $P(n)$
is the for every $n \in \mathbb{N}$.

- First prove $P(1)$
- Then prove that $P(n) \Rightarrow P(n+1)$, for any $n \in \mathbb{N}$.

Proportion: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.

Proposition: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for any $n \in \mathbb{N}$.
Proof: We have $\sum_{k=1}^{1} k=1$ and $\frac{1 \cdot(1+1)}{2}=1$, io $P(1)$ is true.

- Assume $P(n)$ in true for rome $n \in \mathbb{N}$. We have

$$
\begin{aligned}
\sum_{k=1}^{n+1} k & =\sum_{k=1}^{n} k+(n+1)=\frac{n(n+1)}{2}+(n+1) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

no $P(n+1)$ is also true.
b) Proof by contradichon (reduction ad absurdum)

Strategy: To prove P, assume (not P), and reach a contradiction.
Proportion: $\sqrt{2}$ is irrational
Proof: Assume the converse - that $\sqrt{2}$ is rational.
Let $p, q \in \mathbb{N}$ be meh that $\sqrt{2}=p / q$.
We may assume that p and q have no common prime factors.
Then $2=p^{2} / q^{2} \Leftrightarrow p^{2}=2 q^{2}$. Thus, p is even: $p=2 r$.
Therefore, $4 r^{2}=2 q^{2} \Leftrightarrow q^{2}=2 r^{2}$, vo q is also even.
But p and q have no common prime factors! $\quad \square$
c) Proving the contrapositive

Strategy: To prove $P \Rightarrow Q$, prove $(\operatorname{not} Q) \Rightarrow(\operatorname{not} P)$
Note: To pave $P \Leftrightarrow Q$, it is common to prove

$$
P \Rightarrow Q \text { and }(\operatorname{not} P) \Rightarrow(\operatorname{not} Q)
$$

Proposition: If $n \in \mathbb{N}$ is much that the mum of its positive divisors is $n+1$, then n is prime
Proof: Let $n \in \mathbb{N}$ be non-puime. Then it in divisible by $1, n$, and at least one more number $x \in \mathbb{N}$. Hence,

$$
\text { (sum of positive divisors) } \geq 1+n+x>n+1 \text {. }
$$

QUESTIONS? COMMENTS?

