COMPUTING WITH SETS

Unions and intersections
$A \cup B=$ union of A and B

$$
=\{x: x \in A \text { or } x \in B\}
$$

$A \cap B=$ intersection (NO: milt) of A, B $=\{x: x \in A$ and $x \in B\}$

Given n rets $A_{1}, A_{2}, \ldots, A_{n}$, we have:
$A_{1} \cup A_{2} \cup \ldots \cup A_{n}=\bigcup_{k=1}^{n} A_{k}=\left\{x: \begin{array}{ll}x & \text { lies in at least one of } \\ \left.\text { the uts } A_{1}, \ldots, A_{n}\right\}\end{array}\right.$
$A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{k=1}^{n} A_{k}= \begin{cases}x: & x \text { lies in all of } \\ \text { the rets } A\end{cases}$ the rets A_{1}, \ldots, A_{n} \}

Unions and intersections are associative:

$$
\begin{array}{ll}
\left(\bigcup_{k=1}^{n} A_{k}\right) \cup B=\bigcup_{k=1}^{n} A_{k} \cup B & \left(\bigcup_{k=1}^{n} A_{k}\right) \cap B=\bigcup_{k=1}^{n} A_{k} \cap B \\
\left(\bigcap_{k=1}^{n} A_{k}\right) \cup B=\bigcap_{k=1}^{n} A_{k} \cup B & \left(\bigcap_{k=1}^{n} A_{k}\right) \cap B=\bigcap_{k=1}^{n} A_{k} \cap B
\end{array}
$$

Proof. Exercise!

We can also take unions/interrections of larger collections of refs:
Definition: A family of rets is a collection of rets A_{k} indexed over a net $k \in I$
$\bigcup_{k \in I} A_{k}=\left\{x: x\right.$ lies in al least one of the rets $A_{k}($ for $\left.k \in I)\right\}$ $\bigcap_{k \in I} A_{k}=\left\{x: x\right.$ lies in all of the rets $A_{k}($ for $\left.k \in I)\right\}$

Example: Write T as a union of line segments

$$
\begin{aligned}
T & =\{(x, y): 0 \leq y \leq 1-x, \quad 0 \leq x \leq 1\} \\
& =\bigcup_{x \in[0,1]}\{(x, y): 0 \leq y \leq 1-x\} \\
& =\bigcup_{x \in[0,1]}\{x\} \times[0,1-x]
\end{aligned}
$$

The associative laws sill hold:

$$
\begin{array}{ll}
\left(\bigcup_{k \in I} A_{k}\right) \cup B=\bigcup_{k \in I} A_{k} \cup B & \left(\bigcup_{k \in I} A_{k}\right) \cap B=\bigcup_{k \in I} A_{k} \cap B \\
\left(\bigcap_{k \in I} A_{k}\right) \cup B=\bigcap_{k \in I} A_{k} \cup B & \left(\bigcap_{k \in I} A_{k}\right) \cap B=\bigcap_{k \in I} A_{k} \cap B
\end{array}
$$

De Morgan's laws
What is the complement of a union/intersection of rets?

$$
(A \cup B)^{c}=A^{c} \cap B^{c} \quad(A \cap B)^{c}=A^{c} \cup B^{c}
$$

For families of nets:

$$
\left(\bigcup_{k \in I} A_{k}\right)^{c}=\bigcap_{k \in I} A_{k}^{c} \quad\left(\bigcap_{k \in I} A_{k}\right)^{c}=\bigcup_{k \in I} A_{k}^{c}
$$

QUESTIONS?
COMMENTS?

