CONVERGENCE AND CONTINUITY

Let V be a normed vector space, let {xn}_nen be a requence in V and let x ∈ V. We ray that Exn3n converges to x if for all E>0 there is nome NEIN much that $\|x_n - x\| < \varepsilon$ \forall $n \geq N$.

X₁ X₂ X₃ X_{N+1} all elements closer to x than E

The following mean the name: · {xn}, converges to x

 $\lim_{N\to\infty}\chi_N=\chi$

• $X_n \longrightarrow X$ as $n \longrightarrow \infty$

o Xn new X

The following is meaningless:
• Xn converges to X

 $\bullet \quad \lim_{n \to \infty} x_n = x$

Example: V=R, $\|\cdot\|=|\cdot|$, $x_n=\frac{1}{n}$, for $n \in \mathbb{N}$. We guess that $x_n \to 0$ as $n \to \infty$. Let $\varepsilon > 0$. We have $||x_n - 0|| = |\frac{1}{n} - 0| = \frac{1}{n} < \varepsilon \iff \frac{1}{\varepsilon} < n$. Thus, we choose N to be any integer > {. Then $\|x_n - 0\| < \varepsilon$ when $n \ge N$.

Example:
$$V = \mathbb{R}^3$$
 with the Euclidean norm, $X_n = \begin{pmatrix} 1/n \\ -5/n \\ 1/n^2 \end{pmatrix}$, new

Then $X_n \longrightarrow 0$ as $n \longrightarrow \infty$.

Where $X_n \longrightarrow 0$ as $n \longrightarrow \infty$.

Proposition: If $x_n \to x$ and $y_n \to y$ as $n \to \infty$, then $x_n + y_n \to x + y$ as $n \to \infty$.

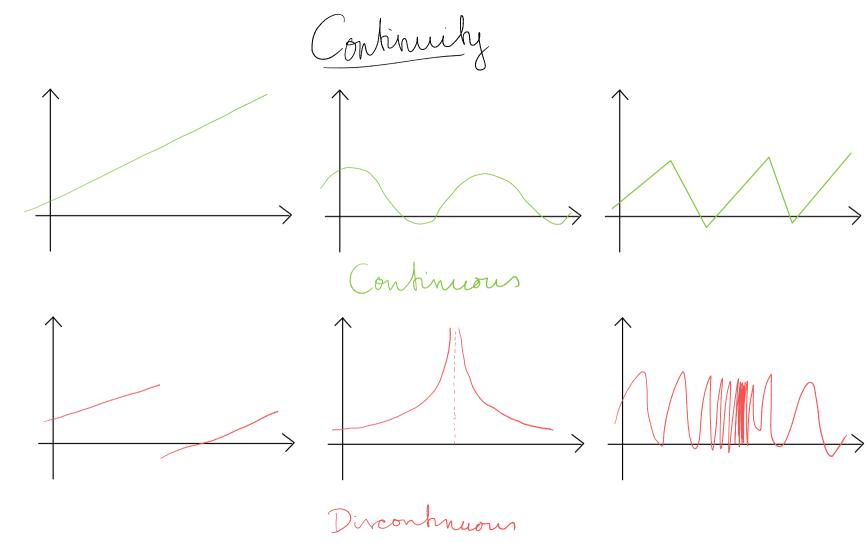
Proof: Let
$$E > 0$$
.

 $x_1 \quad x_2 \quad x_3 \quad ----- \quad x_N \quad x_{N+1}$
 $y_1 \quad y_2 \quad y_3 \quad ----- \quad y_M \quad y_{M+1} \quad ----$

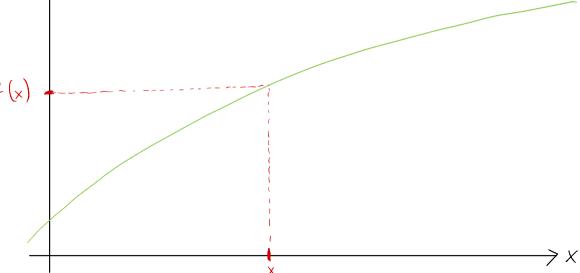
If $||x_n - x|| < E \quad \text{for} \quad n \ge N$, and $||y_n - y|| < E \quad \text{for} \quad n \ge M$,

then $||x_n - x|| + ||y_n - y|| < 2E \quad \text{for} \quad n \ge \max(N, M)$. Hence,

 $||(x_n + y_n) - (x + y)|| = ||(x_n - x) + (y_n - y)|| \le ||x_n - x|| + ||y_n - y|| < 2E$.

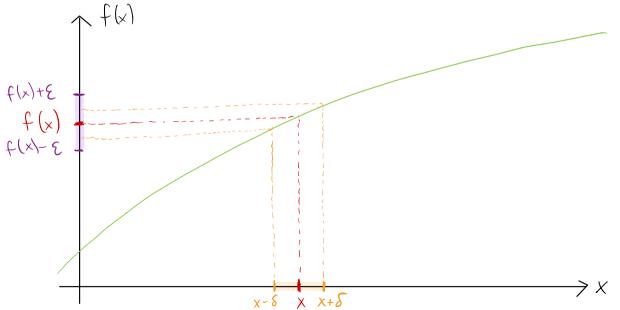


A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at x if for all E > 0 there is none $\delta > 0$ such that $|f(x)-f(y)|<\varepsilon$ when y is such that $|x-y|<\delta$



A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at x if for all E > 0 there is some $\delta > 0$ such that |f(x)-f(y)| < E when y is such that |x-y| < 5 \wedge f(x)

A punchion $f: \mathbb{R} \to \mathbb{R}$ is continuous at x if for all E > 0there is none S > 0 such that |f(x) - f(y)| < E when y is such that |x - y| < S



A function $f: B \rightarrow \mathbb{R}$ (where $B \subseteq \mathbb{R}$) is continuous at $\times \in B$ if for every E > 0 there is some S > 0 such that |f(x)-f(y)|< E when y &B is much that |x-y|< S. Example: tan is continuous in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, but not outside.

A function f:B & R is everywhere continuous (or nimply continuous) if it is continuous at every $x \in B$

A function $f: B \to \mathbb{R}^n$ (for nome $B \subset \mathbb{R}^m$) is continuous at $x \in B$ if for every E > 0 there is nome S > 0 s.t. $\|f(x) - f(y)\| < E$ when $y \in B$ is such that $\|x - y\| < S$

Here, N.V is the Euclidean norm on R" and R"

QUESTIONS? COMMENTS?