MIN, MAX,
InF and SUP

Let $B \subseteq \mathbb{R}$. By max B we mean rome $x \in B$ satisfying

$$
x \geq y \text { for all } y \in B
$$

Let $B \subseteq \mathbb{R}$. By min B we mean rome $x \in B$ ratirfying $x \leqslant y$ for all $y \in B$

Example:
If $B=\{3,8,2,-4,1\}$ then min $B=-4$ and mar $B=8$
If $B=[3,7]$ then $\min B=3$ and $\max B=7$

Every nonempty, finite net $(\# B>0$ and $\# B<\infty)$ has a minimum and a maximum .

Proof: Write $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. The following computes $M=\max B$:

$$
M \leftarrow b_{1}
$$

for $k=2, \ldots, n$:
if $v_{k}>M$:

$$
M \propto b_{k}
$$

end
end

But min/max might not exist if B is infinitely large!
(i) B right be unbounded: $B=\mathbb{N}=\{1,2,3, \ldots\}$ has a min, but no max.
(ii) B might have a "hole": $B=(0,1]$ has a max, but no min

We first take care of problem (i):

- Let $B \subseteq \mathbb{R}$. M is an upper found for B if $M \geq x$ for all $x \in B$.
- B is upper bounded if it has an upper bound.
- M is a least upper bound for B if all other upper bounds N satisfy $N \geqslant M$.
- Let $B \subseteq \mathbb{R}$. M is a lower bound for B if $M \leq x$ for all $x \in B$.
- B is lower bounded if it has a lower bound.
- M is a greatest lower bound for B if all other lower bounds N satisfy $N: M$.

Theorem (the completeness pincejle)
Let $B \subseteq \mathbb{R}$ be nonempty.

- If B is upper bounded then it has a least upper bound
- If B is lover bounded then it has a greatest lower bound.

We denote the least upper bound up B (nupremuem of B) and the greatest lower bound inf B (infirm of B).
Example: inf $\mathbb{N}=1$

$$
\begin{aligned}
& \inf ^{\prime}(0,1]=0 \\
& \operatorname{myp}(0,1]=1
\end{aligned}
$$

For an arbitrary $B \leq \mathbb{R}$ we write:

$$
\begin{aligned}
& \text { mus } B= \begin{cases}-\infty & \text { if } B \text { is empty } \\
\infty & \text { if } B \text { is not bounded from above } \\
\text { (east upper bound) } & \text { otherwise }\end{cases} \\
& \text { inf } B= \begin{cases}\infty & \text { of } B \text { is empty } \\
-\infty & \text { of } B \text { is not bounded from below } \\
\text { (greatest lower bound) } & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem (the completeness principle)
Let $B \subseteq \mathbb{R}$ be nonempty.

- If B is upper bounded then it has a least upper bound
- If B is lower bounded then it has a greatest lower bound.

The completeness principle is essential because it "pills the holes" in \mathbb{Q}.
Example: If $B=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$ then inf $B=-\sqrt{2}, \quad$ mp $B=\sqrt{2}$.

Maximizing sequences
Let $B \subseteq \mathbb{R}$ be nonempty and upper bounded. Then there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in n sch that

$$
x_{n} \xrightarrow[n \rightarrow \infty]{ } \text { men } B
$$

Maximizing sequences
Let $B \subseteq \mathbb{R}$ be nonempty and upper bounded. Then there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in B much that

$$
x_{n} \xrightarrow[n \rightarrow \infty]{ } \operatorname{mep} B
$$

Proof:
For each $n \in \mathbb{N}$, the ut $B \cap\left[\operatorname{mp} B-\frac{1}{n}\right.$, sup $\left.B\right]$ is nonempty (otherwise, my p $B-\frac{1}{n}$ would be a lower upper bound).
Let $x_{n} \in B \cap\left[\operatorname{mup} B-\frac{1}{n}, \sup B\right]$.
Then $\left|x_{n}-\operatorname{mgj} B\right| \leq \frac{1}{n} \longrightarrow 0$ as $n \longrightarrow \infty$.

Example: There exists a sequence of rational number $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to $\sqrt{2}$.

Indeed, let $B=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$. Then my $B=\sqrt{2}$. Let $\left\{x_{n}\right\}_{n}$ be a maximizing requence. Then $x_{n} \in B \subseteq \mathbb{Q}$ for all $n \in \mathbb{N}$, and $x_{n} \xrightarrow[n \rightarrow \infty]{ }$ my $B=\sqrt{2}$.

QUESTIONS? COMMENTS?

