COMPLETENESS (IN R AND R")

Cauchy requences We can "approximate" 12 in Q: 1.41 1.414 1.4142 1.41421 1.414213

12

Cauchy requences

We can "approximate" 12 in Q:

X_= |
X_2 = 1.4

X₂= | . 4 X₃= | . 4 | X₄= | . 4 | 4

X5=1.4142

X6=1.41421 X7=1.41421

12

Cauchy requences

We can "approximate" 12 in Q:

X = | X2= 1.4 X3= 1.4) Xy= 1.414

X5=1.4142

X6=1.41421

X7=1-414213

A requerce {xn}_nen in R is Cauchy if for every E>0 there is some NEN much that

|Xy-Xm|< & whenever n, m > N

Theorem: If {xn 3new is a Cauchy requence in R then there is some $x \in \mathbb{R}$ such that $x_n \xrightarrow[n \to \infty]{} x$.

Cauchy requerces in Rm

A requence $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R}^m in Cauchy if for every \mathbb{E}_{70} there is some $N\in\mathbb{N}$ such that $\|x_n-x_m\|<\mathbb{E}$ whenever $n,m\geq N$

Theorem: For every Cauchy requence \$xn Info in RM there is some $x \in \mathbb{R}^m$ such that $x_n \xrightarrow[n\to\infty]{} x$.

Idea of proof: If $x_n = \begin{pmatrix} x_n \\ x_n \end{pmatrix}$ then $\{x_n\}_n$ is Cauchy in \mathbb{R}^m if each component requerce $\{x_n\}_n$, $\{x_n\}_n$, $\{x_n\}_n$, in Cauchy in \mathbb{R} .

More generally, a mace is complete if every Cauchy requence is convergent.

QUESTIONS? COMMENTS?