UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT2400 - Real Analysis
 Day of examination: 9 June 2021
 Examination hours: 15:00-19:00
 This problem set consists of 2 pages.
 Appendices:
 Permitted aids: Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.

Problem 1. (10 points)
Let (X, d) be the metric space $X=(0,1], d(x, y)=|x-y|$, and let $T: X \rightarrow X$ be given by $T(x)=x / 2$.
Show that T is a contraction. Does T have a fixed point? Justify your answer.

Problem 2. (10 points)
Let (X, d) be a metric space and let $A \subseteq \mathbb{R}$ be closed. We define the metric space $C_{b}(X, A)=\{$ all continuous, bounded $f: X \rightarrow A\}$, equipped with the supremum metric

$$
\begin{equation*}
\rho(f, g)=\sup _{x \in X}|f(x)-g(x)| . \tag{1}
\end{equation*}
$$

(You do not need to show that this is a metric space.) Show that $C_{b}(X, A)$ is a closed subset of $C_{b}(X, \mathbb{R})$.

Problem 3. (20 points)
Let (X, d) be a metric space, and for every nonempty $E \subseteq X$ and $x \in X$, define

$$
\begin{equation*}
\operatorname{dist}(x, E)=\inf \{d(x, y): y \in E\} . \tag{2}
\end{equation*}
$$

(a) Show that if E is compact and nonempty, then there is some $z \in E$ such that $\operatorname{dist}(x, E)=d(x, z)$.
(b) Give an example of a metric space (X, d), a point $x \in X$ and a nonempty subset $E \subseteq X$ for which there is no such point $z \in E$.

Problem 4. (20 points)
For this problem, recall that a bounded linear operator A is invertible if it is bijective and its inverse A^{-1} is bounded.
Let $(X,\|\cdot\|)$ be a normed vector space and let $A: X \rightarrow X$ be an invertible bounded linear operator. Define $\|x\|_{A}=\|A x\|$ for every $x \in X$.
(a) Show that $\|\cdot\|_{A}$ is a norm on X.
(b) Show that a sequence $\left\{x_{n}\right\}_{n}$ in X converges in the norm $\|\cdot\|$ if and only if it converges in the norm $\|\cdot\|_{A}$.

Problem 5. (10 points)
Let f be given by the series

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} n(x-1)^{n}, \quad x \in \mathbb{R} . \tag{3}
\end{equation*}
$$

Determine the set $D=\{x \in \mathbb{R}: f(x)$ converges $\}$. Compute the derivative f^{\prime}, and determine the corresponding set D^{\prime} of points where the series for f^{\prime} converges.

Problem 6. (10 points)
Let $f, g:[-\pi, \pi] \rightarrow \mathbb{C}$ be continuous functions satisfying

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x) e^{i n x} d x=\int_{-\pi}^{\pi} g(x) e^{i n x} d x \quad \forall n \in \mathbb{Z} . \tag{4}
\end{equation*}
$$

Show that $f=g$.
Problem 7. (20 points)
Let $X=C_{b}(\mathbb{R}, \mathbb{R})$, equipped with the supremum norm $\|f\|_{\infty}=\sup _{t \in \mathbb{R}}|f(t)|$. Define

$$
\begin{equation*}
F: X \rightarrow X, \quad F(f)(t)=2 f(t)^{2}-e^{f(t)-t^{2}} \quad \forall t \in \mathbb{R} \tag{5}
\end{equation*}
$$

(a) Prove that F is Fréchet differentiable and show that $F^{\prime}(f)=A$ for $f \in X$, where $A: X \rightarrow X$ is given by

$$
\begin{equation*}
A(r)(t)=4 r(t) f(t)-r(t) e^{f(t)-t^{2}} \quad \forall t \in \mathbb{R}, r \in X \tag{6}
\end{equation*}
$$

Hint: You might need the fact that $\left|e^{s}-1-s\right| \leqslant \frac{e}{2} s^{2}$ for every number $|s| \leqslant 1$. This follows from Taylor expansion of the exponential function.
(b) Let $\mathbb{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function $\mathbb{1}(t)=1$ for all $t \in \mathbb{R}$. Prove that F is bijective in a neighbourhood of $\mathbb{1}$. Compute $\left(F^{-1}\right)^{\prime}(F(\mathbb{1}))$.

