UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	MAT2400 — Real Analysis
Day of examination:	9 June 2021
Examination hours:	15:00-19:00
This problem set consists of 2 pages.	
Appendices:	None
Permitted aids:	Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.

Problem 1. (10 points)

Let (X, d) be the metric space X = (0, 1], d(x, y) = |x - y|, and let $T: X \to X$ be given by T(x) = x/2.

Show that T is a contraction. Does T have a fixed point? Justify your answer.

Problem 2. (10 points)

Let (X, d) be a metric space and let $A \subseteq \mathbb{R}$ be closed. We define the metric space $C_b(X, A) = \{ \text{all continuous, bounded } f \colon X \to A \}$, equipped with the supremum metric

$$\rho(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$
(1)

(You do not need to show that this is a metric space.) Show that $C_b(X, A)$ is a closed subset of $C_b(X, \mathbb{R})$.

Problem 3. (20 points)

Let (X, d) be a metric space, and for every nonempty $E \subseteq X$ and $x \in X$, define

$$\operatorname{dist}(x, E) = \inf\{d(x, y) : y \in E\}.$$
(2)

(a) Show that if E is compact and nonempty, then there is some $z \in E$ such that dist(x, E) = d(x, z).

(b) Give an example of a metric space (X, d), a point $x \in X$ and a nonempty subset $E \subseteq X$ for which there is no such point $z \in E$.

Problem 4. (20 points)

For this problem, recall that a bounded linear operator A is *invertible* if it is bijective and its inverse A^{-1} is bounded.

Let $(X, \|\cdot\|)$ be a normed vector space and let $A: X \to X$ be an invertible bounded linear operator. Define $\|x\|_A = \|Ax\|$ for every $x \in X$.

(Continued on page 2.)

(a) Show that $\|\cdot\|_A$ is a norm on X.

(b) Show that a sequence $\{x_n\}_n$ in X converges in the norm $\|\cdot\|$ if and only if it converges in the norm $\|\cdot\|_A$.

Problem 5. (10 points)

Let f be given by the series

$$f(x) = \sum_{n=1}^{\infty} n(x-1)^n, \qquad x \in \mathbb{R}.$$
(3)

Determine the set $D = \{x \in \mathbb{R} : f(x) \text{ converges}\}$. Compute the derivative f', and determine the corresponding set D' of points where the series for f' converges.

Problem 6. (10 points) Let $f, g: [-\pi, \pi] \to \mathbb{C}$ be continuous functions satisfying

$$\int_{-\pi}^{\pi} f(x)e^{inx} dx = \int_{-\pi}^{\pi} g(x)e^{inx} dx \qquad \forall \ n \in \mathbb{Z}.$$
 (4)

Show that f = g.

Problem 7. (20 points)

Let $X = C_b(\mathbb{R}, \mathbb{R})$, equipped with the supremum norm $||f||_{\infty} = \sup_{t \in \mathbb{R}} |f(t)|$. Define

$$F: X \to X, \qquad F(f)(t) = 2f(t)^2 - e^{f(t) - t^2} \qquad \forall \ t \in \mathbb{R}.$$
 (5)

(a) Prove that F is Fréchet differentiable and show that F'(f) = A for $f \in X$, where $A: X \to X$ is given by

$$A(r)(t) = 4r(t)f(t) - r(t)e^{f(t) - t^2} \qquad \forall \ t \in \mathbb{R}, \ r \in X.$$
(6)

Hint: You might need the fact that $|e^s - 1 - s| \leq \frac{e}{2}s^2$ for every number $|s| \leq 1$. This follows from Taylor expansion of the exponential function.

(b) Let $1: \mathbb{R} \to \mathbb{R}$ be the constant function 1(t) = 1 for all $t \in \mathbb{R}$. Prove that F is bijective in a neighbourhood of 1. Compute $(F^{-1})'(F(1))$.