UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: MAT2400 - Real Analysis
 Day of examination: 18 August 2021
 Examination hours: 09:00-13:00
 This problem set consists of 2 pages.
 Appendices:
 Permitted aids: Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.

Problem 1. (10 points)
Consider \mathbb{R}^{2} equipped with the Euclidean norm $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and the corresponding metric $d(x, y)=\|x-y\|$. Define the unit circle $S=\left\{x \in \mathbb{R}^{2}\right.$: $\|x\|=1\}$. Explain why

- (S, d) is a metric space
- $(S,\|\cdot\|)$ is not a normed vector space.

Note: You may use the fact that $\left(\mathbb{R}^{2},\|\cdot\|\right)$ is a normed vector space.
Problem 2. (10 points)
Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{-x^{2}}$ is uniformly continuous.

Problem 3. (20 points)
Fix some $p \in[1, \infty]$ and let $x \in \ell^{p}(\mathbb{R})$ with components $x=(x(1), x(2), \ldots)$. Define $y_{n}=(x(1), x(2), \ldots, x(n), 0,0,0, \ldots)$ for every $n \in \mathbb{N}$, so that

$$
y_{1}=(x(1), 0,0,0, \ldots), \quad y_{2}=(x(1), x(2), 0,0,0, \ldots)
$$

and so on.
(a) Explain why $y_{n} \in \ell^{p}(\mathbb{R})$ for every $n \in \mathbb{N}$. Show that if $p<\infty$ then $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy.
(b) Is the same true for $p=\infty$? If yes, prove it. If no, provide a counterexample.

Problem 4. (10 points)
Let $X=C([0,1], \mathbb{R})$ be equipped with the supremum metric $d_{\infty}(f, g)=$ $\sup _{t \in[0,1]}|f(t)-g(t)|$. Let $L: X \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
L(p)=0 \quad \text { for all polynomials } p
$$

(Continued on page 2.)

Show that $L(f)=0$ for all $f \in X$.

Problem 5. (20 points)
Let $X=C([0,2], \mathbb{R})$, equipped with the supremum norm $\|f\|_{\infty}=$ $\sup _{t \in[0,2]}|f(t)|$, and let $Y=C([0,1], \mathbb{R})$, equipped with the L^{1} norm $\|g\|_{1}=\int_{0}^{1}|g(t)| d t$.
(a) Show that $L: X \rightarrow Y$, defined by

$$
L(f)=g, \quad \text { where } g(t)=f(2 t) \forall t \in[0,1]
$$

is a bounded linear functional.
(b) Show that L is bijective, but that the inverse $L^{-1}: Y \rightarrow X$ is unbounded.

Problem 6. (20 points)
Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x)=\binom{x_{1}^{3}\left(x_{2}+1\right)-x_{2}^{2}}{x_{1}-x_{2}^{5}} \quad \forall x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}
$$

(a) Show that F is everywhere Fréchet differentiable, and that

$$
F^{\prime}(x)(h)=\left(\begin{array}{cc}
3 x_{1}^{2}\left(x_{2}+1\right) & x_{1}^{3}-2 x_{2} \\
1 & -5 x_{2}^{4}
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \forall x, h \in \mathbb{R}^{2}
$$

(b)
(i) It's difficult, or impossible, to find a formula for F^{-1} (if it exists at all). Why?
(ii) Let

$$
b=\binom{1}{1}, \quad c=\binom{1}{0}
$$

and note that $F(b)=c$. Show that there is a neighbourhood U of b and a neighbourhood V of c such that $F: U \rightarrow V$ is bijective. Compute $\left(F^{-1}\right)^{\prime}(c)$.

Problem 7. (10 points)
A bounded linear operator $L: X \rightarrow Y$ is compact if $\left\{L\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ has a convergent subsequence whenever $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence in X.

Let $X=Y=C([-\pi, \pi], \mathbb{R})$ equipped with the supremum metric, and for some fixed $N \in \mathbb{N}$, let L be the Fourier projection

$$
L(u)(t)=\sum_{n=-N}^{N} \alpha_{n} e^{i n t} \quad \forall t \in[-\pi, \pi], u \in X
$$

where $\alpha_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(s) e^{-i n s} d s$ is the nth Fourier coefficient of u. Show that L is a bounded, compact operator. (You do not need to show that L is linear.)

Hint: Apply the Arzela-Ascoli theorem.

