Solutions to deferred exam in MAT2400, 2022

Problem 1. a) By definition of the directional derivative

$$F'(x;r) = \lim_{t \to 0} \frac{F(x+tr) - F(x)}{t}$$
$$= \lim_{t \to 0} \frac{\int_0^1 e^{-s} (x(s) + tr(s))^2 \, ds - \int_0^1 e^{-s} x(s)^2 \, ds}{t}$$
$$= \lim_{t \to 0} \frac{\int_0^1 e^{-s} \left(x(s)^2 + 2tx(s)r(s) + t^2r(s)^2 \right) \, ds - \int_0^1 e^{-s} x(s)^2 \, ds}{t}$$
$$= \lim_{t \to 0} \frac{\int_0^1 e^{-s} \left(2tx(s)r(s) + t^2r(s)^2 \right) \, ds}{t}$$
$$= \lim_{t \to 0} \int_0^1 e^{-s} \left(2x(s)r(s) + tr(s)^2 \right) \, ds = \int_0^1 e^{-s} 2x(s)r(s) \, ds$$

b) We know that if F is differentiable, then $F'(x)(r) = F'(x;r) = \int_0^1 e^{-s} 2x(s)r(s) ds$, and we only have to check that F'(x;r) satisfies the conditions of a derivative. If we write A(r) for F'(x;r), we first have to check that A is linear:

$$\begin{aligned} A(\alpha r+\beta u) &= \int_0^1 e^{-s} 2x(s)(\alpha r(s)+\beta u(s)) \, ds \\ &= \alpha \int_0^1 e^{-s} 2x(s)r(s) \, ds + \beta \int_0^1 e^{-s} 2x(s)u(s)) \, ds = \alpha A(r) + \beta A(u). \end{aligned}$$

Next we check that A is bounded:

$$|A(r)| = |\int_0^1 e^{-s} 2x(s)r(s) \, ds| \le \int_0^1 e^{-s} 2|x(s)| |r(s)| \, ds \le ||r|| \int_0^1 e^{-s} 2|x(s)| \, ds = K ||r||,$$

where $K = \int_0^1 e^{-s} 2|x(s)| ds$ is finite since x is bounded.

Finally, we must show that

$$\sigma(r) = F(x+r) - F(x) - A(r)$$

goes to 0 faster than r. We have

$$\begin{aligned} |\sigma(r)| &= |\int_0^1 e^{-s} (x(s) + r(s))^2 \, ds - \int_0^1 e^{-s} x(s)^2 \, ds - \int_0^1 e^{-s} 2x(s) r(s) \, ds| \\ &= |\int_0^1 e^{-s} r(s)^2 \, ds| \le \|r\|^2 \int_0^1 e^{-s} \, ds \le M \|r\|^2. \end{aligned}$$

where $M = \int_0^1 e^{-s} ds$. As this expression clearly goes to 0 faster than r, we have proved that F is differentiable with

$$F'(x)(r) = \int_0^1 e^{-s} 2x(s)r(s) \, ds$$

Problem 2. a) Note that the series is geometric with first term $a_0 = 1$ and quotient $r = e^{-x}$. When x > 0, $e^{-x} < 1$, and the series converges. Hence

$$\sum_{n=0}^{\infty} e^{-nx} = \frac{1}{1 - e^{-x}} = \frac{e^x}{e^x - 1}$$

For $x \in [a, \infty)$, we have $e^{-nx} \leq e^{-na}$, and hence Weierstrass's M-test with $M_n = e^{-an}$ shows that the series converges uniformly on $[a, \infty)$.

b) From a) we have

$$\int_{a}^{b} \sum_{n=0}^{\infty} e^{-nx} \, dx = \int_{a}^{b} \frac{e^{x}}{e^{x} - 1} \, dx \tag{1}$$

Since the series converges uniformly on [a, b], it can be integrated termwise:

$$\int_{a}^{b} \sum_{n=0}^{\infty} e^{-nx} dx = \sum_{n=0}^{\infty} \int_{a}^{b} e^{-nx} dx = \int_{a}^{b} 1 dx + \sum_{n=1}^{\infty} \int_{a}^{b} e^{-nx} dx$$
$$= b - a + \sum_{n=1}^{\infty} \left[-\frac{e^{-nx}}{n} \right]_{a}^{b} = b - a + \sum_{n=1}^{\infty} \frac{e^{-na} - e^{-nb}}{n}$$

On the other hand, the right hand side of (1) can be integrated by the substitution $u = e^x$:

$$\int_{a}^{b} \frac{e^{x}}{e^{x} - 1} dx = \int_{e^{a}}^{e^{b}} \frac{1}{u + 1} du = \left[\ln(u + 1)\right]_{e^{a}}^{e^{b}} = \ln(e^{b} + 1) - \ln(e^{a} + 1).$$

Combining what we now have, we get

$$b - a + \sum_{n=1}^{\infty} \frac{e^{-na} - e^{-nb}}{n} = \ln(e^b + 1) - \ln(e^a + 1),$$

which is equivalent to

$$\sum_{n=1}^{\infty} \frac{e^{-na} - e^{-nb}}{n} = \ln(e^b - 1) - \ln(e^a - 1) + a - b.$$

Problem 3. a) We need to show that the three axioms for norms are satisfied:

- (i) $||f|| \ge 0$ with equality if and only if f = 0.
- (ii) $\|\alpha f\| = |\alpha| \|f\|.$
- (iii) $||f + g|| \le ||f|| + ||g||$.

We have:

(i) By definition, $||f|| \ge 0$ and ||0|| = 0. If $f \ne 0$, there is an *a* such that $f(a) \ne 0$, and hence

$$||f|| = \sum_{m=0}^{\infty} |f(m)| \ge |f(a)| > 0.$$

(ii) We have

$$\|\alpha f\| = \sum_{m=0}^{\infty} |\alpha f(m)| = |\alpha| \sum_{m=0}^{\infty} |f(m)| = |\alpha| \|f\|.$$

(iii) We have

$$\begin{split} \|f+g\| &= \sum_{m=0}^{\infty} |f(m) + g(m)| \leq \sum_{m=0}^{\infty} (|f(m)| + |g(m)|) \\ &= \sum_{m=0}^{\infty} |f(m)| + \sum_{m=0}^{\infty} |g(m)| = \|f\| + \|g\|. \end{split}$$

b) Note that if n > k, then (summing a geometric series)

$$||f_n - f_k|| = \sum_{m=0}^{\infty} |f_n(m) - f_k(m)| = \sum_{k+1}^n 2^{-m} < \sum_{k+1}^\infty 2^{-m} = \frac{2^{-(k+1)}}{1 - \frac{1}{2}} = 2^{-k}$$

As we can clearly get 2^{-k} as small as we want by choosing k large enough, $\{f_n\}$ is a Cauchy sequence.

To show that X isn't complete, it suffices to show that the Cauchy sequence $\{f_n\}$ doesn't converge. Assume for contradiction that $\{f_n\}$ converges to an element $f \in X$. Since f only has finitely many nonzero values, there is a largest number k such that $f(k) \neq 0$. This means that for any n > k, we have

$$||f_n - f|| = \sum_{m=0}^{\infty} |f_n(m) - f(m)| \ge |f_n(k+1) - f(k+1)| = 2^{-(k+1)},$$

and hence $\{f_n\}$ cannot converge to f.

Problem 4. a) The function $f: K \to \mathbb{R}$ defined by $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{a}\|$ is continuous. Since K is compact by the Bolzano-Weierstrass Theorem, f has a minimum point \mathbf{x} by the the Extreme Value Theorem.

b) Since K is nonempty, there must be an element **b** in K. Let $r = ||\mathbf{b} - \mathbf{a}||$ and let $\overline{B}(\mathbf{a}; r)$ be the *closed* ball of radius r around **a**. The set $K \cap \overline{B}(\mathbf{a}; r)$ is nonempty as it contains **b**, and it is compact by the Bolzano-Weierstrass Theorem. By part a) there is an element **x** in $K \cap \overline{B}(\mathbf{a}; r)$ that is nearest to **a**. As all points in $K \setminus \overline{B}(\mathbf{a}, r)$ are more than a distance r away from \mathbf{a} , this point must also be the nearest point to \mathbf{a} in K.

Problem 5. a) The figure shows the graph of f_n .

As $||f_n|| = 1$ for all n, the set is obviously bounded. To prove that it is closed, it suffices to show that if g isn't one of the f_n 's, then there is an $\epsilon > 0$ such that $B(g, \epsilon)$ doesn't contain any f_n . First note that if g is constant 1, then $||g - f_n|| = 1$ for all n, and hence we can take $\epsilon = 1$. If g is not constant 1, there is an a > 0 such that $g(a) \neq 1$. This means that if n is so large than $\frac{1}{n} < a$, then $||g - f_n|| \ge |g(a) - 1|$. As there are only finitely many n's that do not satisfy $\frac{1}{n} < a$, there is an $\epsilon > 0$ such that $B(g, \epsilon)$ doesn't contain any of these. If we also make sure that $\epsilon < |g(a) - 1|$, we have obtained what we want.

b) By Arzela-Ascoli's Theorem, A is compact if and only if it is bounded, closed and equicontinuous. As we have checked that A is closed and bounded, equicontinuity is the crucial property. To see that the sequence $\{f_n\}$ isn't equicontinuous, choose $\epsilon = \frac{1}{2}$ and note that no matter how small $\delta > 0$ is, there will be an n such that $\frac{1}{n} < \delta$, and then $|f_n(\frac{1}{n}) - f_n(0)| = 1 > \epsilon$ even though $|\frac{1}{n} - 0| < \delta$. Hence there is no δ that works for all n, and hence $\{f_n\}$ isn't equicontinuous. By Arzela-Ascoli's Theorem, A isn't compact.