Solutions to deferred exam in MAT2400, 2022
Problem 1. a) By definition of the directional derivative

$$
\begin{gathered}
F^{\prime}(x ; r)=\lim _{t \rightarrow 0} \frac{F(x+t r)-F(x)}{t} \\
=\lim _{t \rightarrow 0} \frac{\int_{0}^{1} e^{-s}(x(s)+\operatorname{tr}(s))^{2} d s-\int_{0}^{1} e^{-s} x(s)^{2} d s}{t} \\
=\lim _{t \rightarrow 0} \frac{\int_{0}^{1} e^{-s}\left(x(s)^{2}+2 t x(s) r(s)+t^{2} r(s)^{2}\right) d s-\int_{0}^{1} e^{-s} x(s)^{2} d s}{t} \\
=\lim _{t \rightarrow 0} \frac{\int_{0}^{1} e^{-s}\left(2 t x(s) r(s)+t^{2} r(s)^{2}\right) d s}{t} \\
\lim _{t \rightarrow 0} \int_{0}^{1} e^{-s}\left(2 x(s) r(s)+\operatorname{tr}(s)^{2}\right) d s=\int_{0}^{1} e^{-s} 2 x(s) r(s) d s
\end{gathered}
$$

b) We know that if F is differentiable, then $F^{\prime}(x)(r)=F^{\prime}(x ; r)=\int_{0}^{1} e^{-s} 2 x(s) r(s) d s$, and we only have to check that $F^{\prime}(x ; r)$ satisfies the conditions of a derivative. If we write $A(r)$ for $F^{\prime}(x ; r)$, we first have to check that A is linear:

$$
\begin{gathered}
A(\alpha r+\beta u)=\int_{0}^{1} e^{-s} 2 x(s)(\alpha r(s)+\beta u(s)) d s \\
\left.=\alpha \int_{0}^{1} e^{-s} 2 x(s) r(s) d s+\beta \int_{0}^{1} e^{-s} 2 x(s) u(s)\right) d s=\alpha A(r)+\beta A(u) .
\end{gathered}
$$

Next we check that A is bounded:
$|A(r)|=\left|\int_{0}^{1} e^{-s} 2 x(s) r(s) d s\right| \leq \int_{0}^{1} e^{-s} 2|x(s)||r(s)| d s \leq\|r\| \int_{0}^{1} e^{-s} 2|x(s)| d s=K\|r\|$,
where $K=\int_{0}^{1} e^{-s} 2|x(s)| d s$ is finite since x is bounded.
Finally, we must show that

$$
\sigma(r)=F(x+r)-F(x)-A(r)
$$

goes to 0 faster than r. We have

$$
\begin{gathered}
|\sigma(r)|=\left|\int_{0}^{1} e^{-s}(x(s)+r(s))^{2} d s-\int_{0}^{1} e^{-s} x(s)^{2} d s-\int_{0}^{1} e^{-s} 2 x(s) r(s) d s\right| \\
=\left|\int_{0}^{1} e^{-s} r(s)^{2} d s\right| \leq\|r\|^{2} \int_{0}^{1} e^{-s} d s \leq M\|r\|^{2} .
\end{gathered}
$$

where $M=\int_{0}^{1} e^{-s} d s$. As this expression clearly goes to 0 faster than r, we have proved that F is differentiable with

$$
F^{\prime}(x)(r)=\int_{0}^{1} e^{-s} 2 x(s) r(s) d s
$$

Problem 2. a) Note that the series is geometric with first term $a_{0}=1$ and quotient $r=e^{-x}$. When $x>0, e^{-x}<1$, and the series converges. Hence

$$
\sum_{n=0}^{\infty} e^{-n x}=\frac{1}{1-e^{-x}}=\frac{e^{x}}{e^{x}-1}
$$

For $x \in[a, \infty)$, we have $e^{-n x} \leq e^{-n a}$, and hence Weierstrass's M-test with $M_{n}=e^{-a n}$ shows that the series converges uniformly on $[a, \infty)$.
b) From a) we have

$$
\begin{equation*}
\int_{a}^{b} \sum_{n=0}^{\infty} e^{-n x} d x=\int_{a}^{b} \frac{e^{x}}{e^{x}-1} d x \tag{1}
\end{equation*}
$$

Since the series converges uniformly on $[a, b]$, it can be integrated termwise:

$$
\begin{gathered}
\int_{a}^{b} \sum_{n=0}^{\infty} e^{-n x} d x=\sum_{n=0}^{\infty} \int_{a}^{b} e^{-n x} d x=\int_{a}^{b} 1 d x+\sum_{n=1}^{\infty} \int_{a}^{b} e^{-n x} d x \\
=b-a+\sum_{n=1}^{\infty}\left[-\frac{e^{-n x}}{n}\right]_{a}^{b}=b-a+\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}
\end{gathered}
$$

On the other hand, the right hand side of (1) can be integrated by the substitution $u=e^{x}$:

$$
\int_{a}^{b} \frac{e^{x}}{e^{x}-1} d x=\int_{e^{a}}^{e^{b}} \frac{1}{u+1} d u=[\ln (u+1)]_{e^{a}}^{e^{b}}=\ln \left(e^{b}+1\right)-\ln \left(e^{a}+1\right)
$$

Combining what we now have, we get

$$
b-a+\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}=\ln \left(e^{b}+1\right)-\ln \left(e^{a}+1\right)
$$

which is equivalent to

$$
\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}=\ln \left(e^{b}-1\right)-\ln \left(e^{a}-1\right)+a-b
$$

Problem 3. a) We need to show that the three axioms for norms are satisfied:
(i) $\|f\| \geq 0$ with equality if and only if $f=0$.
(ii) $\|\alpha f\|=|\alpha|\|f\|$.
(iii) $\|f+g\| \leq\|f\|+\|g\|$.

We have:
(i) By definition, $\|f\| \geq 0$ and $\|0\|=0$. If $f \neq 0$, there is an a such that $f(a) \neq 0$, and hence

$$
\|f\|=\sum_{m=0}^{\infty}|f(m)| \geq|f(a)|>0
$$

(ii) We have

$$
\|\alpha f\|=\sum_{m=0}^{\infty}|\alpha f(m)|=|\alpha| \sum_{m=0}^{\infty}|f(m)|=|\alpha|\|f\|
$$

(iii) We have

$$
\begin{aligned}
\|f+g\| & =\sum_{m=0}^{\infty}|f(m)+g(m)| \leq \sum_{m=0}^{\infty}(|f(m)|+|g(m)|) \\
& =\sum_{m=0}^{\infty}|f(m)|+\sum_{m=0}^{\infty}|g(m)|=\|f\|+\|g\|
\end{aligned}
$$

b) Note that if $n>k$, then (summing a geometric series)

$$
\left\|f_{n}-f_{k}\right\|=\sum_{m=0}^{\infty}\left|f_{n}(m)-f_{k}(m)\right|=\sum_{k+1}^{n} 2^{-m}<\sum_{k+1}^{\infty} 2^{-m}=\frac{2^{-(k+1)}}{1-\frac{1}{2}}=2^{-k}
$$

As we can clearly get 2^{-k} as small as we want by choosing k large enough, $\left\{f_{n}\right\}$ is a Cauchy sequence.

To show that X isn't complete, it suffices to show that the Cauchy sequence $\left\{f_{n}\right\}$ doesn't converge. Assume for contradiction that $\left\{f_{n}\right\}$ converges to an element $f \in X$. Since f only has finitely many nonzero values, there is a largest number k such that $f(k) \neq 0$. This means that for any $n>k$, we have

$$
\left\|f_{n}-f\right\|=\sum_{m=0}^{\infty}\left|f_{n}(m)-f(m)\right| \geq\left|f_{n}(k+1)-f(k+1)\right|=2^{-(k+1)}
$$

and hence $\left\{f_{n}\right\}$ cannot converge to f.
Problem 4. a) The function $f: K \rightarrow \mathbb{R}$ defined by $f(\mathbf{x})=\|\mathbf{x}-\mathbf{a}\|$ is continuous. Since K is compact by the Bolzano-Weierstrass Theorem, f has a minimum point \mathbf{x} by the the Extreme Value Theorem.
b) Since K is nonempty, there must be an element \mathbf{b} in K. Let $r=\|\mathbf{b}-\mathbf{a}\|$ and let $\bar{B}(\mathbf{a} ; r)$ be the closed ball of radius r around \mathbf{a}. The set $K \cap \bar{B}(\mathbf{a} ; r)$ is nonempty as it contains \mathbf{b}, and it is compact by the Bolzano-Weierstrass Theorem. By part a) there is an element \mathbf{x} in $K \cap \bar{B}(\mathbf{a} ; r)$ that is nearest to \mathbf{a}. As all
points in $K \backslash \bar{B}(\mathbf{a}, r)$ are more than a distance r away from a, this point must also be the nearest point to \mathbf{a} in K.

Problem 5. a) The figure shows the graph of f_{n}.

As $\left\|f_{n}\right\|=1$ for all n, the set is obviously bounded. To prove that it is closed, it suffices to show that if g isn't one of the f_{n} 's, then there is an $\epsilon>0$ such that $B(g, \epsilon)$ doesn't contain any f_{n}. First note that if g is constant 1 , then $\left\|g-f_{n}\right\|=1$ for all n, and hence we can take $\epsilon=1$. If g is not constant 1 , there is an $a>0$ such that $g(a) \neq 1$. This means that if n is so large than $\frac{1}{n}<a$, then $\left\|g-f_{n}\right\| \geq|g(a)-1|$. As there are only finitely many n 's that do not satisfy $\frac{1}{n}<a$, there is an $\epsilon>0$ such that $B(g, \epsilon)$ doesn't contain any of these. If we also make sure that $\epsilon<|g(a)-1|$, we have obtained what we want.
b) By Arzela-Ascoli's Theorem, A is compact if and only if it is bounded, closed and equicontinuous. As we have checked that A is closed and bounded, equicontinuity is the crucial property. To see that the sequence $\left\{f_{n}\right\}$ isn't equicontinuous, choose $\epsilon=\frac{1}{2}$ and note that no matter how small $\delta>0$ is, there will be an n such that $\frac{1}{n}<\delta$, and then $\left|f_{n}\left(\frac{1}{n}\right)-f_{n}(0)\right|=1>\epsilon$ even though $\left|\frac{1}{n}-0\right|<\delta$. Hence there is no δ that works for all n, and hence $\left\{f_{n}\right\}$ isn't equicontinuous. By Arzela-Ascoli's Theorem, A isn't compact.

