Solutions to exam in M AT2400, Spring 2022

Problem 1. The real Fourier series is given by
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b, = — f(z) sin(nx) dz.
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Since the functions f(x)cos(nz) are even and the functions f(z)sin(nx) are

odd, we get by symmetry that

_ % /O " f(a) cos(nz) da

We first compute

For n > 1, we get
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’T) is 0, and if n is odd, then sin (ng) is1

Observe that if n is even, then sin (n2
and —1 every second time starting at 1. Hence
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This means that the Fourier series of f is
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) Since f is differentiable at 0, Dini’s Test (or one of its corollaries) tells us

that f(0) equals the sum of the Fourier series at 0:
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i.e.

Collecting terms and multiplying by 5, we get
T = (=1)" 1 1 1
R =1—-— - — = -
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Problem 2. a) By definition

F(z+tr)— F(x)

F'(a;r) = lim ;
- lig (x(0) + tr(O))(x(l): tr(1)) — x(0)z(1)
~ lim a:(O)xt?l) + t(0)r(1) + tr(O)tx(l) + t?r(0)r(1) — z(0)x(1)
= lim (2(0)r(1) + r(0)a(1) + tr(0)r(1))

=z(0)r(1) + r(0)z(1).

b) We know that if F is differentiable, then F'(z)(r) = F'(x;r) = z(0)r(1) +
r(0)z(1), and we only have to check that F'(x;r) satisfies the conditions of a
derivative. If we write A(r) for F'(z;7), we first have to check that A is linear:

Alar + Bs) = z(0) (ar(1) + Bs(1)) + (ar(0) + Bs(0))x(1)
= a(z(0)r(1) + r(0)z(1)) + B(:c(O)s(l)) + s(0)z(1)) = aA(r) + BA(s).
Next we check that A is bounded:
[A(r)| = |z(0)r(1) +r(0)z(1)] < [z(0)[[r(1))| + [7(0)]|=(1)]
< llllirll + lr{llzll = 2f=([{]-
Finally, we must show that
o(r)=F(z+7r)— F(x) — A(r)
goes to 0 faster than r. We have
()] = |(2(0) +(0))(x(1) +7(1)) — z(0)z(1) — (x(0)r(1) +r(0)z(1))]

=[r(O)r)] < [Ir|®

which clearly goes to 0 faster than r. Hence we have proved that F' is differen-
tiable with
Fl(z)(r) = =(0)r(1) + r(0)z(1)



Alternative solution: We may also solve b) by using the product rule in
Proposition 6.1.8: If we put G(z) = z(0) and H(z) = x(1), we get F(z) =
G(x)H(x) and

F'(x)(r) = G'(z)(r)H(z) + G(x)H' (z)(r).

As G and H are linear maps, they are their own derivatives, and hence G’ (z)(r) =
G(r) =7(0) and H'(z)(r) = H(r) = r(1). This gives

Fl(z)(r) = G'(z)(r)H (z) + G(2)H'(x)(r) = r(0)x(1) + z(0)r(1).
It is also possible to use the Chain Rule to solve the problem.

Problem 3. Since f(x) = a is almost solvable, there is for each n € N an
z, € X such that |f(z,)—a| < . Since X is compact, {z,} has a subsequence
{Zn, } converging to a point zg € X. By construction, f(z,,) — a, and since f
is continuous, f(z,,) — f(xo). Hence f(z9) = a.

A counterexample in the noncompact case is to let X = (0,1), f(z) = =,
and a = 0. Then f(x) = a is almost solvable, but there is no x € X such that

fw) = a

Alternative solution: Observe that since f is continuous, so is g(z) = | f(x) —
a|. By the Extreme Value Theorem, g has a minimum point xq. Since g is non-
negative, g(xg) > 0, and since for every € > 0 there is an z such that g(x) < e,

we must have g(zg) =0, i.e. f(zo) =a.

Problem 4. a) By Bessel’s inequality

o0 o) o0 o0
0=lu—ul>=> anen— Bueal> =11 (an—Bn)enl® = (an—Bn)?
n=1 n=1 n=1 n=0

which implies that (o, — 3,)? = 0 for all n, and hence a,, = f3,.

Alternative solution: Since u=>"", a,e,, we have

o0 oo
(we;) = (Y omen,e) =Y anlen,e) = a
n=1 n=1

Similarly, since u =3 ,e,, we have

(w,e;) = (> Bnen,e:) = > Bulen, e;) = Bi,
n=1 n=1

and hence we must have o; = 3; for all ¢ € N,
b) The sequence {e, }nen can fail to be a basis for H in two ways: Either
there is an element u € H such that u # > 7 | ane, for all sequences {a,},



or there is an element u € H which can be written as a linear combination of
the e,’s i two different ways: u=>_"", a,e, = Y .-, Bne,. By a) the latter
cannot happen in the present situation, and hence we are left with the first
possibility that u # > >° | a,e, for all sequences {a,}, and in particular for
the sequence a;, = (u,e,).

¢) Since H is complete, the series >~ | e, will converge if the partial sums
Sk = 22:1 ane, form a Cauchy sequence. Note that since > - |o,|? < |lul]?
by Bessel’s inequality, the partial sums S = ZZ:O | |? converge and hence
form a Cauchy sequence. Given an € > 0, we can thus find a N such that for
k,m > N, we have ||S,, — Sk|| < 2. Hence (assuming k < m):

m m %
1
s = skll =1 Y anenl = ( > Ian2> = [[Sm = Skl[* <e.

n=k+1 n=k+1

This means that the partial sums s = ZZ:1 ane, form a Cauchy sequence and
hence converge to an element v. In other words, v = ZZOZI p €.
The “Fourier coefficients” 5, of v with respect to {e, }nen are given by

) oo
ﬂm = <V7em> = <Z anenaem> = Z an<enaem> = Qp,
n=1 n=1

which shows that u and v have the same Fourier coefficients.

Alternative solution: The existence of a v such that v = Z;’ozl ape, follows
immediately from Proposition 5.3.11.

Problem 5. a) Using € = 1, we see that there is an N € N such that |f(z)| =
|f(z) — 0] < 1 when > N. Since the interval [0, N] is compact and f is
continuous, the Extreme Value Theorem tells us that |f| has a maximum value
M on [0, N]. This means that |f(z)| < max{M, 1} for all z.

b) Observe first that by a), || f|| = sup{|f(x)| : € [0,00)} is finite, and we
only need to check the three properties of a norm:

(i) |f] > 0 with equality if and only if f = 0.
(i) fof | = [l f]-
(i) [f + gl <[f1+ lgl-

(i) By definition, ||f|| > 0 and ||0]| = 0. If f # 0, there is an a such that
f(a) # 0, and hence

1F]l = sup{[f(z)] : = € [0,00)} = [f(a)| > 0.
(if) We have

lecf [l = sup{|ef (z)] : @ € [0,00)} = sup{|e||f(z)| : 2 € [0,00)}



= |afsup{[f ()] : z € [0,00)} = |al[|f]-
(iii) We have

|+ gl = sup{|f(x) + g()| : € [0,00)} <sup{|f(z)] + |g(z)| : @ € [0,00)}

< sup{[f(z)| : z € [0,00)} +sup{|g(z)[ : © € [0,00)} = [ f] + |9l
¢) The figure shows the graph of e, in red.
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As |en () — em(x)] < 1 for all 2 and |e,(n) — e, (n)| = 1 when n # m, we have
len — emll = 1.

To show that B is not compact, it suffices to find a sequence in B that
doesn’t have a convergent subsequence. If we choose {e,} as our sequence, we
see that for any subsequence {e,, }, we will have ||e,, — e, || =1 when k # m.
Hence {e,, } is not a Cauchy sequence and cannot converge.

d) By Theorem 4.6.2, we know that the space ¥ = C4([0,00),R) of all
bounded, continuous functions f: [0,00) — R is complete in the supremum
norm/metric, and by a) our space X is a subspace of Y. Since any closed sub-
space of a complete space is complete (Proposition 3.4.4), it suffices to prove that
X is closed, and to prove that X is closed, it suffices to show that X¢ =Y\ X is
open. To this end, chose a g in X°¢. Since g is not in X, g(x) does not converge
to 0 as = goes to zero. This means that there must be an € > 0 such that
lg(x)| > € for arbitrarily large x’s. Let h € B(g, 5). Then |g(z) — h(z)| < §
for all 2, and hence there must be arbitrarily large x’s where |h(z)| > § (the
same z’s where |g(z)| > €). Hence h does not converge to 0 as x goes to infinity,
which means that h € X¢. Thus for any g € X¢, there is a ball B(g, §) around
g that also belongs to X ¢, and hence X°¢ is open.

Alternative solution: Assume that {f,} is a Cauchy sequence in X; we must
prove that it converges to an f € X in the uniform norm. First observe that for
any z € [0,00), [fn(®) = fim(2)| < || fn — fmll, and hence {f,(z)} is a Cauchy
sequence for every z. Since R is complete, {f,(z)} converges to a point which
we call f(z). We must prove that {f,} converges uniformly to f and that f
belongs to X.

First observe that for a given ¢, there is an N € N such that || f,, — fm| < §
for all n,m > N. This means that for any = € [0,00), |fn(z) = fin(2)] < §.
Letting m — oo, we get |f,(z) — f(x)| < § < e for all n > N, and hence {f,,}



converges uniformly to f. As uniform convergence preserves continuity, f is
continuous.

To prove that f € X it remains to show that lim,_, . f(x) = 0. Given € > 0,
we must find a K € R such that |f(z)| < € for all z > K. Since {f,} converges
uniformly to f, there is an N € N such that || f — fn[| < §. As fx € X, there
is a K € N such that |fy(z)| < § for all z > K. This means that for z > K.

@) = 1f@) = fv(@) + fn(@)] < (@) = fw(@)| + |fw@)] < 5+ 5 = ¢

This shows that f € X and completes the proof.



