Solutions to exam in MAT2400, Spring 2022

Problem 1. The real Fourier series is given by

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+a_{n} \sin (n x)\right)
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{aligned}
$$

Since the functions $f(x) \cos (n x)$ are even and the functions $f(x) \sin (n x)$ are odd, we get by symmetry that

$$
\begin{gathered}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \\
b_{n}=0
\end{gathered}
$$

We first compute

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} 1 d x=\frac{2}{\pi} \cdot \frac{\pi}{2}=1
$$

For $n \geq 1$, we get
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos (n x) d x=\frac{2}{\pi}\left[\frac{\sin (n x)}{n}\right]_{0}^{\frac{\pi}{2}}=\frac{2}{n \pi} \sin \left(n \frac{\pi}{2}\right)$.
Observe that if n is even, then $\sin \left(n \frac{\pi}{2}\right)$ is 0 , and if n is odd, then $\sin \left(n \frac{\pi}{2}\right)$ is 1 and -1 every second time starting at 1 . Hence

$$
a_{2 n+1}=\frac{2}{(2 n+1) \pi}(-1)^{n} .
$$

This means that the Fourier series of f is

$$
\frac{1}{2}+\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \cos [(2 n+1) x]
$$

b) Since f is differentiable at 0 , Dini's Test (or one of its corollaries) tells us that $f(0)$ equals the sum of the Fourier series at 0 :

$$
f(0)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \cos [(2 n+1) 0]
$$

i.e.

$$
1=\frac{1}{2}+\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

Collecting terms and multiplying by $\frac{\pi}{2}$, we get

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots
$$

Problem 2. a) By definition

$$
\begin{gathered}
F^{\prime}(x ; r)=\lim _{t \rightarrow 0} \frac{F(x+t r)-F(x)}{t} \\
=\lim _{t \rightarrow 0} \frac{(x(0)+\operatorname{tr}(0))(x(1)+t r(1))-x(0) x(1)}{t} \\
=\lim _{t \rightarrow 0} \frac{x(0) x(1)+t x(0) r(1)+\operatorname{tr}(0) x(1)+t^{2} r(0) r(1)-x(0) x(1)}{t} \\
=\lim _{t \rightarrow 0}(x(0) r(1)+r(0) x(1)+\operatorname{tr}(0) r(1)) \\
=x(0) r(1)+r(0) x(1) .
\end{gathered}
$$

b) We know that if F is differentiable, then $F^{\prime}(x)(r)=F^{\prime}(x ; r)=x(0) r(1)+$ $r(0) x(1)$, and we only have to check that $F^{\prime}(x ; r)$ satisfies the conditions of a derivative. If we write $A(r)$ for $F^{\prime}(x ; r)$, we first have to check that A is linear:

$$
\begin{gathered}
A(\alpha r+\beta s)=x(0)(\alpha r(1)+\beta s(1))+(\alpha r(0)+\beta s(0)) x(1) \\
=\alpha(x(0) r(1)+r(0) x(1))+\beta(x(0) s(1))+s(0) x(1))=\alpha A(r)+\beta A(s)
\end{gathered}
$$

Next we check that A is bounded:

$$
\begin{gathered}
|A(r)|=|x(0) r(1)+r(0) x(1)| \leq \mid x(0) \| r(1))|+|r(0) \| x(1)| \\
\leq\|x\|\|r\|+\|r\|\|x\|=2\|x\|\|r\|
\end{gathered}
$$

Finally, we must show that

$$
\sigma(r)=F(x+r)-F(x)-A(r)
$$

goes to 0 faster than r. We have

$$
\begin{gathered}
|\sigma(r)|=|(x(0)+r(0))(x(1)+r(1))-x(0) x(1)-(x(0) r(1)+r(0) x(1))| \\
=|r(0) r(1)| \leq\|r\|^{2}
\end{gathered}
$$

which clearly goes to 0 faster than r. Hence we have proved that F is differentiable with

$$
F^{\prime}(x)(r)=x(0) r(1)+r(0) x(1)
$$

Alternative solution: We may also solve b) by using the product rule in Proposition 6.1.8: If we put $G(x)=x(0)$ and $H(x)=x(1)$, we get $F(x)=$ $G(x) H(x)$ and

$$
F^{\prime}(x)(r)=G^{\prime}(x)(r) H(x)+G(x) H^{\prime}(x)(r)
$$

As G and H are linear maps, they are their own derivatives, and hence $G^{\prime}(x)(r)=$ $G(r)=r(0)$ and $H^{\prime}(x)(r)=H(r)=r(1)$. This gives

$$
F^{\prime}(x)(r)=G^{\prime}(x)(r) H(x)+G(x) H^{\prime}(x)(r)=r(0) x(1)+x(0) r(1)
$$

It is also possible to use the Chain Rule to solve the problem.
Problem 3. Since $f(x)=a$ is almost solvable, there is for each $n \in \mathbb{N}$ an $x_{n} \in X$ such that $\left|f\left(x_{n}\right)-a\right|<\frac{1}{n}$. Since X is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ converging to a point $x_{0} \in X$. By construction, $f\left(x_{n_{k}}\right) \rightarrow a$, and since f is continuous, $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$. Hence $f\left(x_{0}\right)=a$.

A counterexample in the noncompact case is to let $X=(0,1), f(x)=x$, and $a=0$. Then $f(x)=a$ is almost solvable, but there is no $x \in X$ such that $f(x)=a$.

Alternative solution: Observe that since f is continuous, so is $g(x)=\mid f(x)-$ $a \mid$. By the Extreme Value Theorem, g has a minimum point x_{0}. Since g is nonnegative, $g\left(x_{0}\right) \geq 0$, and since for every $\epsilon>0$ there is an x such that $g(x)<\epsilon$, we must have $g\left(x_{0}\right)=0$, i.e. $f\left(x_{0}\right)=a$.

Problem 4. a) By Bessel's inequality
$0=\|\mathbf{u}-\mathbf{u}\|^{2}=\left\|\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}-\sum_{n=1}^{\infty} \beta_{n} \mathbf{e}_{n}\right\|^{2}=\left\|\sum_{n=1}^{\infty}\left(\alpha_{n}-\beta_{n}\right) \mathbf{e}_{n}\right\|^{2} \geq \sum_{n=0}^{\infty}\left(\alpha_{n}-\beta_{n}\right)^{2}$
which implies that $\left(\alpha_{n}-\beta_{n}\right)^{2}=0$ for all n, and hence $\alpha_{n}=\beta_{n}$.
Alternative solution: Since $\mathbf{u}=\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$, we have

$$
\left\langle\mathbf{u}, \mathbf{e}_{i}\right\rangle=\left\langle\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}, \mathbf{e}_{i}\right\rangle=\sum_{n=1}^{\infty} \alpha_{n}\left\langle\mathbf{e}_{n}, \mathbf{e}_{i}\right\rangle=\alpha_{i}
$$

Similarly, since $\mathbf{u}=\sum_{n=1}^{\infty} \beta_{n} \mathbf{e}_{n}$, we have

$$
\left\langle\mathbf{u}, \mathbf{e}_{i}\right\rangle=\left\langle\sum_{n=1}^{\infty} \beta_{n} \mathbf{e}_{n}, \mathbf{e}_{i}\right\rangle=\sum_{n=1}^{\infty} \beta_{n}\left\langle\mathbf{e}_{n}, \mathbf{e}_{i}\right\rangle=\beta_{i}
$$

and hence we must have $\alpha_{i}=\beta_{i}$ for all $i \in \mathbb{N}$.
b) The sequence $\left\{\mathbf{e}_{n}\right\}_{n \in \mathbb{N}}$ can fail to be a basis for H in two ways: Either there is an element $\mathbf{u} \in H$ such that $\mathbf{u} \neq \sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$ for all sequences $\left\{\alpha_{n}\right\}$,
or there is an element $\mathbf{u} \in H$ which can be written as a linear combination of the \mathbf{e}_{n} 's i two different ways: $\mathbf{u}=\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}=\sum_{n=1}^{\infty} \beta_{n} \mathbf{e}_{n}$. By a) the latter cannot happen in the present situation, and hence we are left with the first possibility that $\mathbf{u} \neq \sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$ for all sequences $\left\{\alpha_{n}\right\}$, and in particular for the sequence $\alpha_{n}=\left\langle\mathbf{u}, \mathbf{e}_{n}\right\rangle$.
c) Since H is complete, the series $\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$ will converge if the partial sums $\mathbf{s}_{k}=\sum_{n=1}^{k} \alpha_{n} \mathbf{e}_{n}$ form a Cauchy sequence. Note that since $\sum_{n=0}^{\infty}\left|\alpha_{n}\right|^{2} \leq\|\mathbf{u}\|^{2}$ by Bessel's inequality, the partial sums $S_{k}=\sum_{n=0}^{k}\left|\alpha_{n}\right|^{2}$ converge and hence form a Cauchy sequence. Given an $\epsilon>0$, we can thus find a N such that for $k, m \geq N$, we have $\left\|S_{m}-S_{k}\right\|<\epsilon^{2}$. Hence (assuming $k \leq m$):

$$
\left\|s_{m}-s_{k}\right\|=\left\|\sum_{n=k+1}^{m} \alpha_{n} \mathbf{e}_{n}\right\|=\left(\sum_{n=k+1}^{m}\left|\alpha_{n}\right|^{2}\right)^{\frac{1}{2}}=\left\|S_{m}-S_{k}\right\|^{\frac{1}{2}}<\epsilon
$$

This means that the partial sums $\mathbf{s}_{k}=\sum_{n=1}^{k} \alpha_{n} \mathbf{e}_{n}$ form a Cauchy sequence and hence converge to an element \mathbf{v}. In other words, $\mathbf{v}=\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$.

The "Fourier coefficients" β_{m} of \mathbf{v} with respect to $\left\{\mathbf{e}_{n}\right\}_{n \in \mathbb{N}}$ are given by

$$
\beta_{m}=\left\langle\mathbf{v}, \mathbf{e}_{m}\right\rangle=\left\langle\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}, \mathbf{e}_{m}\right\rangle=\sum_{n=1}^{\infty} \alpha_{n}\left\langle\mathbf{e}_{n}, \mathbf{e}_{m}\right\rangle=\alpha_{m},
$$

which shows that \mathbf{u} and \mathbf{v} have the same Fourier coefficients.
Alternative solution: The existence of a \mathbf{v} such that $\mathbf{v}=\sum_{n=1}^{\infty} \alpha_{n} \mathbf{e}_{n}$ follows immediately from Proposition 5.3.11.

Problem 5. a) Using $\epsilon=1$, we see that there is an $N \in \mathbb{N}$ such that $|f(x)|=$ $|f(x)-0|<1$ when $x \geq N$. Since the interval $[0, N]$ is compact and f is continuous, the Extreme Value Theorem tells us that $|f|$ has a maximum value M on $[0, N]$. This means that $|f(x)| \leq \max \{M, 1\}$ for all x.
b) Observe first that by a), $\|f\|=\sup \{|f(x)|: x \in[0, \infty)\}$ is finite, and we only need to check the three properties of a norm:
(i) $\|f\| \geq 0$ with equality if and only if $f=0$.
(ii) $\|\alpha f\|=|\alpha|\|f\|$.
(iii) $\|f+g\| \leq\|f\|+\|g\|$.
(i) By definition, $\|f\| \geq 0$ and $\|0\|=0$. If $f \neq 0$, there is an a such that $f(a) \neq 0$, and hence

$$
\|f\|=\sup \{|f(x)|: x \in[0, \infty)\} \geq|f(a)|>0
$$

(ii) We have

$$
\|\alpha f\|=\sup \{|\alpha f(x)|: x \in[0, \infty)\}=\sup \{|\alpha \| f(x)|: x \in[0, \infty)\}
$$

$$
=|\alpha| \sup \{|f(x)|: x \in[0, \infty)\}=|\alpha|\|f\|
$$

(iii) We have

$$
\begin{gathered}
\|f+g\|=\sup \{|f(x)+g(x)|: x \in[0, \infty)\} \leq \sup \{|f(x)|+|g(x)|: x \in[0, \infty)\} \\
\leq \sup \{|f(x)|: x \in[0, \infty)\}+\sup \{|g(x)|: x \in[0, \infty)\}=\|f\|+\|g\| .
\end{gathered}
$$

c) The figure shows the graph of e_{n} in red.

As $\left|e_{n}(x)-e_{m}(x)\right| \leq 1$ for all x and $\left|e_{n}(n)-e_{m}(n)\right|=1$ when $n \neq m$, we have $\left\|e_{n}-e_{m}\right\|=1$.

To show that B is not compact, it suffices to find a sequence in B that doesn't have a convergent subsequence. If we choose $\left\{e_{n}\right\}$ as our sequence, we see that for any subsequence $\left\{e_{n_{k}}\right\}$, we will have $\left\|e_{n_{k}}-e_{n_{m}}\right\|=1$ when $k \neq m$. Hence $\left\{e_{n_{k}}\right\}$ is not a Cauchy sequence and cannot converge.
d) By Theorem 4.6.2, we know that the space $Y=C_{b}([0, \infty), \mathbb{R})$ of all bounded, continuous functions $f:[0, \infty) \rightarrow \mathbb{R}$ is complete in the supremum norm/metric, and by a) our space X is a subspace of Y. Since any closed subspace of a complete space is complete (Proposition 3.4.4), it suffices to prove that X is closed, and to prove that X is closed, it suffices to show that $X^{c}=Y \backslash X$ is open. To this end, chose a g in X^{c}. Since g is not in $X, g(x)$ does not converge to 0 as x goes to zero. This means that there must be an $\epsilon>0$ such that $|g(x)| \geq \epsilon$ for arbitrarily large x 's. Let $h \in \mathrm{~B}\left(g, \frac{\epsilon}{2}\right)$. Then $|g(x)-h(x)|<\frac{\epsilon}{2}$ for all x, and hence there must be arbitrarily large x 's where $|h(x)| \geq \frac{\epsilon}{2}$ (the same x 's where $|g(x)| \geq \epsilon$). Hence h does not converge to 0 as x goes to infinity, which means that $h \in X^{c}$. Thus for any $g \in X^{c}$, there is a ball $\mathrm{B}\left(g, \frac{\epsilon}{2}\right)$ around g that also belongs to X^{c}, and hence X^{c} is open.

Alternative solution: Assume that $\left\{f_{n}\right\}$ is a Cauchy sequence in X; we must prove that it converges to an $f \in X$ in the uniform norm. First observe that for any $x \in[0, \infty),\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|$, and hence $\left\{f_{n}(x)\right\}$ is a Cauchy sequence for every x. Since \mathbb{R} is complete, $\left\{f_{n}(x)\right\}$ converges to a point which we call $f(x)$. We must prove that $\left\{f_{n}\right\}$ converges uniformly to f and that f belongs to X.

First observe that for a given ϵ, there is an $N \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|<\frac{\epsilon}{2}$ for all $n, m \geq N$. This means that for any $x \in[0, \infty),\left|f_{n}(x)-f_{m}(x)\right|<\frac{\epsilon}{2}$. Letting $m \rightarrow \infty$, we get $\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2}<\epsilon$ for all $n \geq N$, and hence $\left\{f_{n}\right\}$
converges uniformly to f. As uniform convergence preserves continuity, f is continuous.

To prove that $f \in X$, it remains to show that $\lim _{x \rightarrow \infty} f(x)=0$. Given $\epsilon>0$, we must find a $K \in \mathbb{R}$ such that $|f(x)|<\epsilon$ for all $x \geq K$. Since $\left\{f_{n}\right\}$ converges uniformly to f, there is an $N \in \mathbb{N}$ such that $\left\|f-f_{N}\right\|<\frac{\epsilon}{2}$. As $f_{N} \in X$, there is a $K \in \mathbb{N}$ such that $\left|f_{N}(x)\right|<\frac{\epsilon}{2}$ for all $x \geq K$. This means that for $x \geq K$.

$$
|f(x)|=\left|f(x)-f_{N}(x)+f_{N}(x)\right| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This shows that $f \in X$ and completes the proof.

