
Solutions to exam in MAT2400, Spring 2022

Problem 1. The real Fourier series is given by

a0
2

+

∞∑
n=1

(an cos(nx) + an sin(nx))

where

an =
1

π

∫ π

−π
f(x) cos(nx) dx

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

Since the functions f(x) cos(nx) are even and the functions f(x) sin(nx) are
odd, we get by symmetry that

an =
2

π

∫ π

0

f(x) cos(nx) dx

bn = 0

We first compute

a0 =
2

π

∫ π

0

f(x) dx =
2

π

∫ π
2

0

1 dx =
2

π
· π

2
= 1.

For n ≥ 1, we get

an =
2

π

∫ π

0

f(x) cos(nx) dx =
2

π

∫ π
2

0

cos(nx) dx =
2

π

[
sin(nx)

n

]π
2

0

=
2

nπ
sin
(
n
π

2

)
.

Observe that if n is even, then sin
(
nπ2
)

is 0, and if n is odd, then sin
(
nπ2
)

is 1
and −1 every second time starting at 1. Hence

a2n+1 =
2

(2n+ 1)π
(−1)n.

This means that the Fourier series of f is

1

2
+

2

π

∞∑
n=0

(−1)n

2n+ 1
cos[(2n+ 1)x].

b) Since f is differentiable at 0, Dini’s Test (or one of its corollaries) tells us
that f(0) equals the sum of the Fourier series at 0:

f(0) =
1

2
+

2

π

∞∑
n=0

(−1)n

2n+ 1
cos[(2n+ 1)0],
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i.e.

1 =
1

2
+

2

π

∞∑
n=0

(−1)n

2n+ 1
.

Collecting terms and multiplying by π
2 , we get

π

4
=

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ . . .

Problem 2. a) By definition

F ′(x; r) = lim
t→0

F (x+ tr)− F (x)

t

= lim
t→0

(x(0) + tr(0))(x(1) + tr(1))− x(0)x(1)

t

= lim
t→0

x(0)x(1) + tx(0)r(1) + tr(0)x(1) + t2r(0)r(1)− x(0)x(1)

t

= lim
t→0

(
x(0)r(1) + r(0)x(1) + tr(0)r(1)

)
= x(0)r(1) + r(0)x(1).

b) We know that if F is differentiable, then F ′(x)(r) = F ′(x; r) = x(0)r(1) +
r(0)x(1), and we only have to check that F ′(x; r) satisfies the conditions of a
derivative. If we write A(r) for F ′(x; r), we first have to check that A is linear:

A(αr + βs) = x(0)
(
αr(1) + βs(1)

)
+
(
αr(0) + βs(0)

)
x(1)

= α
(
x(0)r(1) + r(0)x(1)

)
+ β

(
x(0)s(1)) + s(0)x(1)

)
= αA(r) + βA(s).

Next we check that A is bounded:

|A(r)| = |x(0)r(1) + r(0)x(1)| ≤ |x(0)||r(1))|+ |r(0)||x(1)|

≤ ‖x‖‖r‖+ ‖r‖‖x‖ = 2‖x‖‖r‖.

Finally, we must show that

σ(r) = F (x+ r)− F (x)−A(r)

goes to 0 faster than r. We have

|σ(r)| = |(x(0) + r(0))(x(1) + r(1))− x(0)x(1)−
(
x(0)r(1) + r(0)x(1))|

= |r(0)r(1)| ≤ ‖r‖2

which clearly goes to 0 faster than r. Hence we have proved that F is differen-
tiable with

F ′(x)(r) = x(0)r(1) + r(0)x(1)
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Alternative solution: We may also solve b) by using the product rule in
Proposition 6.1.8: If we put G(x) = x(0) and H(x) = x(1), we get F (x) =
G(x)H(x) and

F ′(x)(r) = G′(x)(r)H(x) +G(x)H ′(x)(r).

AsG andH are linear maps, they are their own derivatives, and henceG′(x)(r) =
G(r) = r(0) and H ′(x)(r) = H(r) = r(1). This gives

F ′(x)(r) = G′(x)(r)H(x) +G(x)H ′(x)(r) = r(0)x(1) + x(0)r(1).

It is also possible to use the Chain Rule to solve the problem.

Problem 3. Since f(x) = a is almost solvable, there is for each n ∈ N an
xn ∈ X such that |f(xn)−a| < 1

n . Since X is compact, {xn} has a subsequence
{xnk} converging to a point x0 ∈ X. By construction, f(xnk)→ a, and since f
is continuous, f(xnk)→ f(x0). Hence f(x0) = a.

A counterexample in the noncompact case is to let X = (0, 1), f(x) = x,
and a = 0. Then f(x) = a is almost solvable, but there is no x ∈ X such that
f(x) = a.

Alternative solution: Observe that since f is continuous, so is g(x) = |f(x)−
a|. By the Extreme Value Theorem, g has a minimum point x0. Since g is non-
negative, g(x0) ≥ 0, and since for every ε > 0 there is an x such that g(x) < ε,
we must have g(x0) = 0, i.e. f(x0) = a.

Problem 4. a) By Bessel’s inequality

0 = ‖u−u‖2 = ‖
∞∑
n=1

αnen−
∞∑
n=1

βnen‖2 = ‖
∞∑
n=1

(αn−βn)en‖2 ≥
∞∑
n=0

(αn−βn)2

which implies that (αn − βn)2 = 0 for all n, and hence αn = βn.

Alternative solution: Since u =
∑∞
n=1 αnen, we have

〈u, ei〉 = 〈
∞∑
n=1

αnen, ei〉 =

∞∑
n=1

αn〈en, ei〉 = αi

Similarly, since u =
∑∞
n=1 βnen, we have

〈u, ei〉 = 〈
∞∑
n=1

βnen, ei〉 =

∞∑
n=1

βn〈en, ei〉 = βi,

and hence we must have αi = βi for all i ∈ N.
b) The sequence {en}n∈N can fail to be a basis for H in two ways: Either

there is an element u ∈ H such that u 6=
∑∞
n=1 αnen for all sequences {αn},
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or there is an element u ∈ H which can be written as a linear combination of
the en’s i two different ways: u =

∑∞
n=1 αnen =

∑∞
n=1 βnen. By a) the latter

cannot happen in the present situation, and hence we are left with the first
possibility that u 6=

∑∞
n=1 αnen for all sequences {αn}, and in particular for

the sequence αn = 〈u, en〉.
c) SinceH is complete, the series

∑∞
n=1 αnen will converge if the partial sums

sk =
∑k
n=1 αnen form a Cauchy sequence. Note that since

∑∞
n=0 |αn|2 ≤ ‖u‖2

by Bessel’s inequality, the partial sums Sk =
∑k
n=0 |αn|2 converge and hence

form a Cauchy sequence. Given an ε > 0, we can thus find a N such that for
k,m ≥ N , we have ‖Sm − Sk‖ < ε2. Hence (assuming k ≤ m):

‖sm − sk‖ = ‖
m∑

n=k+1

αnen‖ =

(
m∑

n=k+1

|αn|2
) 1

2

= ‖Sm − Sk‖
1
2 < ε.

This means that the partial sums sk =
∑k
n=1 αnen form a Cauchy sequence and

hence converge to an element v. In other words, v =
∑∞
n=1 αnen.

The “Fourier coefficients” βm of v with respect to {en}n∈N are given by

βm = 〈v, em〉 = 〈
∞∑
n=1

αnen, em〉 =

∞∑
n=1

αn〈en, em〉 = αm,

which shows that u and v have the same Fourier coefficients.

Alternative solution: The existence of a v such that v =
∑∞
n=1 αnen follows

immediately from Proposition 5.3.11.

Problem 5. a) Using ε = 1, we see that there is an N ∈ N such that |f(x)| =
|f(x) − 0| < 1 when x ≥ N . Since the interval [0, N ] is compact and f is
continuous, the Extreme Value Theorem tells us that |f | has a maximum value
M on [0, N ]. This means that |f(x)| ≤ max{M, 1} for all x.

b) Observe first that by a), ‖f‖ = sup{|f(x)| : x ∈ [0,∞)} is finite, and we
only need to check the three properties of a norm:

(i) ||f || ≥ 0 with equality if and only if f = 0.

(ii) ||αf || = |α|||f ||.

(iii) ||f + g|| ≤ ||f ||+ ||g||.

(i) By definition, ‖f‖ ≥ 0 and ‖0‖ = 0. If f 6= 0, there is an a such that
f(a) 6= 0, and hence

‖f‖ = sup{|f(x)| : x ∈ [0,∞)} ≥ |f(a)| > 0.

(ii) We have

‖αf‖ = sup{|αf(x)| : x ∈ [0,∞)} = sup{|α||f(x)| : x ∈ [0,∞)}
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= |α| sup{|f(x)| : x ∈ [0,∞)} = |α|‖f‖.

(iii) We have

||f + g|| = sup{|f(x) + g(x)| : x ∈ [0,∞)} ≤ sup{|f(x)|+ |g(x)| : x ∈ [0,∞)}

≤ sup{|f(x)| : x ∈ [0,∞)}+ sup{|g(x)| : x ∈ [0,∞)} = ||f ||+ ||g||.

c) The figure shows the graph of en in red.

x

y

n− 1 n+ 1

1

As |en(x)− em(x)| ≤ 1 for all x and |en(n)− em(n)| = 1 when n 6= m, we have
‖en − em‖ = 1.

To show that B is not compact, it suffices to find a sequence in B that
doesn’t have a convergent subsequence. If we choose {en} as our sequence, we
see that for any subsequence {enk}, we will have ‖enk − enm‖ = 1 when k 6= m.
Hence {enk} is not a Cauchy sequence and cannot converge.

d) By Theorem 4.6.2, we know that the space Y = Cb([0,∞),R) of all
bounded, continuous functions f : [0,∞) → R is complete in the supremum
norm/metric, and by a) our space X is a subspace of Y . Since any closed sub-
space of a complete space is complete (Proposition 3.4.4), it suffices to prove that
X is closed, and to prove that X is closed, it suffices to show that Xc = Y \X is
open. To this end, chose a g in Xc. Since g is not in X, g(x) does not converge
to 0 as x goes to zero. This means that there must be an ε > 0 such that
|g(x)| ≥ ε for arbitrarily large x’s. Let h ∈ B(g, ε2 ). Then |g(x) − h(x)| < ε

2
for all x, and hence there must be arbitrarily large x’s where |h(x)| ≥ ε

2 (the
same x’s where |g(x)| ≥ ε). Hence h does not converge to 0 as x goes to infinity,
which means that h ∈ Xc. Thus for any g ∈ Xc, there is a ball B(g, ε2 ) around
g that also belongs to Xc, and hence Xc is open.

Alternative solution: Assume that {fn} is a Cauchy sequence in X; we must
prove that it converges to an f ∈ X in the uniform norm. First observe that for
any x ∈ [0,∞), |fn(x) − fm(x)| ≤ ‖fn − fm‖, and hence {fn(x)} is a Cauchy
sequence for every x. Since R is complete, {fn(x)} converges to a point which
we call f(x). We must prove that {fn} converges uniformly to f and that f
belongs to X.

First observe that for a given ε, there is an N ∈ N such that ‖fn − fm‖ < ε
2

for all n,m ≥ N . This means that for any x ∈ [0,∞), |fn(x) − fm(x)| < ε
2 .

Letting m → ∞, we get |fn(x) − f(x)| ≤ ε
2 < ε for all n ≥ N , and hence {fn}
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converges uniformly to f . As uniform convergence preserves continuity, f is
continuous.

To prove that f ∈ X, it remains to show that limx→∞ f(x) = 0. Given ε > 0,
we must find a K ∈ R such that |f(x)| < ε for all x ≥ K. Since {fn} converges
uniformly to f , there is an N ∈ N such that ‖f − fN‖ < ε

2 . As fN ∈ X, there
is a K ∈ N such that |fN (x)| < ε

2 for all x ≥ K. This means that for x ≥ K.

|f(x)| = |f(x)− fN (x) + fN (x)| ≤ |f(x)− fN (x)|+ |fN (x)| < ε

2
+
ε

2
= ε

This shows that f ∈ X and completes the proof.
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