UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: MAT2400 - Real Analysis
Day of examination: 8-15 June 2020
This problem set consists of 6 pages.
Appendices:Permitted aids:

None
Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 11 sub-problems (1, 2a, 2b, etc.), and you can get up to 10 points for each sub-problem.

Problem 1

Let X be a normed vector space over \mathbb{R}, let $U \subseteq X$ be an open set and let $F: U \rightarrow \mathbb{R}$ be a (Fréchet) differentiable function.

- We say that a point $a \in U$ is a critical point if $F^{\prime}(a)=\mathbf{0}$ (where $\mathbf{0}$ denotes the zero operator $\mathbf{0}(x)=0$).
- We say that a point $a \in U$ is a local minimum (or local maximum) if there is a neighborhood V of a where $F(a)=\min _{x \in V} F(x)$ (or $\left.F(a)=\max _{x \in V} F(x)\right)$.

Show that every local maximum/minimum is a critical point.
Solution: Let $a \in X$ be a local extremum, say, a local maximum. Then $F(a) \geqslant F(x)$ for all x in some neighborhood $B(x ; \delta)$. Since F is Fréchet differentiable at a, it is Gateaux differentiable, with derivative

$$
F^{\prime}(a ; r)=\lim _{h \rightarrow 0} \frac{F(a+h r)-F(a)}{h} \quad \text { for any } r \in X
$$

The numerator in this expression is non-positive for h small enough, while the denominator h might be of either sign. It follows that the limit must be zero,

$$
F^{\prime}(a ; r)=0 \quad \forall r \in X
$$

Hence, $F^{\prime}(a)(r)=F^{\prime}(a ; r)=0$ for all $r \in X$, whence $F^{\prime}(a)=\mathbf{0}$.

Problem 2

If X is a metric space and $f: X \rightarrow \mathbb{R}$ is a function then the support of f is the set $\operatorname{supp} f \subseteq X$ defined by

$$
\operatorname{supp} f=\bar{A}, \quad \text { where } \quad A=\{x \in X \mid f(x) \neq 0\}
$$

(and \bar{A} denotes the closure of A). Let $C_{c}(\mathbb{R}, \mathbb{R})$ be the vector space

$$
C_{c}(\mathbb{R}, \mathbb{R})=\{f \in C(\mathbb{R}, \mathbb{R}) \mid \operatorname{supp} f \text { is compact }\}
$$

equipped with the supremum norm $\|\cdot\|_{\text {sup }}$. (As usual, \mathbb{R} is equipped with the canonical norm $|\cdot|$.)

$2 a$

Show that every $f \in C_{c}(\mathbb{R}, \mathbb{R})$ is uniformly continuous.

2b

For any $r \in \mathbb{R}$, define the function $A_{r}: C_{c}(\mathbb{R}, \mathbb{R}) \rightarrow C_{c}(\mathbb{R}, \mathbb{R})$ by $A_{r}(f)(t)=$ $f(t+r)$. Show that A_{r} is a bounded linear operator.

2c

We set now $r=\frac{1}{n}$ for $n \in \mathbb{N}$. Show that the sequence $\left\{A_{1 / n}\right\}_{n \in \mathbb{N}}$ converges pointwise to I, the identity operator on $C_{c}(\mathbb{R}, \mathbb{R})$. In other words, show that $\lim _{n \rightarrow \infty} A_{1 / n}(f)=f$ for all $f \in C_{c}(\mathbb{R}, \mathbb{R})$.

2d
Show that $A_{1 / n}$ does not converge to I in operator norm.
Hint: For every $n \in \mathbb{N}$, find a function $f_{n} \in C_{c}(\mathbb{R}, \mathbb{R})$ with $\|f\|_{\text {sup }}=1$ and $\left\|f_{n}-A_{1 / n}\left(f_{n}\right)\right\|_{\text {sup }}=1$.

Solution:

$2 a$

Let $f \in C_{c}(\mathbb{R}, \mathbb{R})$ and $\varepsilon>0$. Then $\operatorname{supp} f$ is compact, so there is some bounded interval $[a, b]$ such that $\operatorname{supp} f \subseteq[a, b]$. Since f is continuous on the compact set $[a-1, b+1]$, it is uniformly continuous there, so there is some $\delta>0$ such that $|f(t)-f(s)|<\varepsilon$ when $t, s \in[a-1, b+1]$ satisfy $|t-s|<\delta$. If $t, s \in \mathbb{R}$ satisfy $|t-s|<\min (\delta, 1)$ then either $t, s \in[a-1, b+1]$, in which case $|f(t)-f(s)|<\varepsilon$, or $t, s \notin[a, b]$, in which case $|f(t)-f(s)|=|0-0|<\varepsilon$. Hence, it is uniformly continuous on \mathbb{R}.

2b

$A_{r}(\alpha f+g)(t)=(\alpha f+g)(t+r)=\alpha f(t+r)+g(t+r)=\alpha A_{r}(f)(t)+$ $A_{r}(g)(t)$, so A_{r} is linear. For boundedness, $\left\|A_{r}(f)\right\|_{\text {sup }}=\sup _{t \in \mathbb{R}} \mid f(t+$ $r) \mid=\|f\|_{\text {sup }}$, so $\|A\|_{\mathcal{L}}=1$.

2c

Let $f \in C_{c}(\mathbb{R}, \mathbb{R})$. Then f is uniformly continuous, so for every $\varepsilon>0$ there is some $\delta>0$ such that $|f(t+r)-f(t)| \leqslant \varepsilon$ for all $t \in \mathbb{R}$ and $|r|<\delta$. Hence, also $\left\|A_{1 / n}(f)-f\right\|_{\text {sup }}=\sup _{t \in \mathbb{R}}|f(t+r)-f(t)| \leqslant \varepsilon$ when $|1 / n|<\delta$.

2d
We have

$$
\left\|A_{1 / n}-I\right\|_{\mathcal{L}}=\sup _{f \in C_{c}(\mathbb{R}, \mathbb{R}),\|f\|_{\text {sup }}=1}\left\|A_{1 / n}(f)-f\right\|_{\text {sup }}
$$

We aim to show that $\left\|A_{1 / n}-I\right\|_{\mathcal{L}} \geqslant 1$ for all $n \in \mathbb{N}$. For any $n \in \mathbb{N}$, let $f_{n} \in C_{c}(\mathbb{R}, \mathbb{R})$ be any function satisfying $f_{n}(0)=0, f_{n}(1 / n)=1$, and $\|f\|_{C_{c}(\mathbb{R}, \mathbb{R})}=1$, such as

$$
f_{n}(t)= \begin{cases}t / n & \text { if } 0<t<1 / n \\ 1 & \text { if } 1 / n \leqslant t \leqslant 1-1 / n \\ (1-t) / n & \text { if } 1-1 / n<t<1 \\ 0 & \text { if } t \geqslant 1 \text { or } t \leqslant 0\end{cases}
$$

Then $\left\|A_{1 / n} f_{n}-f_{n}\right\|_{\text {sup }}=1$. Thus,

$$
\left\|A_{1 / n}-I\right\|_{\mathcal{L}} \geqslant\left\|A_{1 / n} f_{n}-f_{n}\right\|_{\text {sup }}=1
$$

It follows that $A_{1 / n} \nrightarrow I$ as $n \rightarrow \infty$.

Problem 3

Let $p \in[1, \infty)$ and let $\ell^{p}(\mathbb{R})$ be the vector space of all sequences $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ in \mathbb{R} such that $\|a\|_{\ell^{p}}<\infty$, where

$$
\|a\|_{\ell^{p}}=\left(\sum_{i=1}^{\infty}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

3a

For each $a \in \ell^{p}(\mathbb{R})$, let $F(a)=b$, where b is the sequence with components $b_{i}=\sin \left(a_{i}\right)($ for $i \in \mathbb{N})$. Show that $F(a) \in \ell^{p}(\mathbb{R})$ for every $a \in \ell^{p}(\mathbb{R})$.

3b

Show that F is Fréchet differentiable, and that the Fréchet derivative is given by

$$
F^{\prime}(a)(r)=\left(\cos \left(a_{i}\right) r_{i}\right)_{i=1}^{\infty} \quad \text { for } r \in \ell^{p}(\mathbb{R})
$$

Solution:

3a

Using the estimate $\left|\sin \left(a_{i}\right)\right| \leqslant\left|a_{i}\right|$, we get

$$
\|F(a)\|_{\ell^{p}}=\left(\sum_{i=1}^{\infty}\left|\sin \left(a_{i}\right)\right|^{p}\right) \leqslant\left(\sum_{i=1}^{\infty}\left|a_{i}\right|^{p}\right)=\|a\|_{\ell^{p}}<\infty
$$

3b

Fix $a \in \ell^{p}(\mathbb{R})$. We claim that $F^{\prime}(a)=A$, where $A(r)=\left(\cos \left(a_{i}\right) r_{i}\right)_{i=1}^{\infty}$.
We show first that A is a bounded linear operator from $\ell^{p}(\mathbb{R})$ into itself.
First,

$$
\|A(r)\|_{\ell^{p}(\mathbb{R})}=\left(\sum_{i=1}^{\infty}\left|\cos \left(a_{i}\right) r_{i}\right|^{p}\right)^{1 / p} \leqslant\left(\sum_{i=1}^{\infty}\left|r_{i}\right|^{p}\right)^{1 / p}=\|r\|_{\ell^{p}(\mathbb{R})}<\infty
$$

so $A(r) \in \ell^{p}(\mathbb{R})$. It is clear that A is linear. Last, by the above estimate, A is bounded with $\|A\|_{\mathcal{L}} \leqslant 1$. To show that $F^{\prime}(a)=A$, we observe that a Taylor expansion of $t \mapsto \sin (t)$ yields

$$
|\sin (t+h)-\sin (t)-h \cos (t)| \leqslant \frac{h^{2}}{2} \max _{s \in \mathbb{R}}\left|\sin ^{\prime \prime}(s)\right|=\frac{h^{2}}{2}
$$

for any $t, h \in \mathbb{R}$. Next, we note that

$$
\left|r_{j}\right|=\left(\left|r_{j}\right|^{p}\right)^{1 / p} \leqslant\left(\sum_{i=1}^{\infty}\left|r_{i}\right|^{p}\right)^{1 / p}=\|r\|_{\ell^{p}(\mathbb{R})} \quad \forall j \in \mathbb{N}
$$

for every $r \in \ell^{p}(\mathbb{R})$, and hence also $\|r\|_{\ell^{\infty}(\mathbb{R})} \leqslant\|r\|_{\ell^{p}(\mathbb{R})}$. Hence,

$$
\begin{aligned}
& \| F(a+r)-F(a)- A(r) \|_{\ell^{p}}=\left(\sum_{i=1}^{\infty}\left|\sin \left(a_{i}+r_{i}\right)-\sin \left(a_{i}\right)-\cos \left(a_{i}\right) r_{i}\right|^{p}\right)^{1 / p} \\
& \leqslant\left(\sum_{i=1}^{\infty}\left|r_{i}\right|^{2 p}\right)^{1 / p} \leqslant \sup _{i \in \mathbb{N}}\left|r_{i}\right|\left(\sum_{i=1}^{\infty}\left|r_{i}\right|^{p}\right)^{1 / p} \leqslant\|r\|_{\ell^{p}(\mathbb{R})}^{2}
\end{aligned}
$$

Thus, $F(a+r)-F(a)-A(r)=o\left(\|r\|_{\ell^{p}}\right)$ as $r \rightarrow 0$, which proves the claim.

Problem 4

Consider the system of equations

$$
\left\{\begin{array}{l}
x^{2}-3 x y+e^{y+z}=-1 \tag{1}\\
-2 \cos (x-y) z+z y^{4}=1
\end{array}\right.
$$

Note that $(x, y, z)=(1,1,-1)$ solves (1).
Show that there is an open interval $(a, b) \subseteq \mathbb{R}$ containing -1 and functions $X, Y:(a, b) \rightarrow \mathbb{R}$ such that $X(-1)=1, Y(-1)=1$ and such that $(X(z), Y(z), z)$ solves (1) for every $z \in(a, b)$.

Solution: Define the function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
F(x, y, z)=\binom{x^{2}-3 x y+e^{y+z}+1}{-2 \cos (x-y) z+z y^{4}-1}
$$

and note that $F(1,1,-1)=0$. The components of F are smooth functions of (x, y, z), so F is continuously differentiable. The Jacobian with respect to (x, y) is

$$
J_{(x, y)} F(x, y, z)=\left(\begin{array}{cc}
2 x-3 y & -3 x+e^{y+z} \\
2 \sin (x-y) z & -2 \sin (x-y) z+4 z y^{3}
\end{array}\right)
$$

so

$$
J_{(x, y)} F(1,1,-1)=\left(\begin{array}{cc}
-1 & -2 \\
0 & -4
\end{array}\right)
$$

This is an invertible matrix, so the bounded linear operator $\frac{\partial F}{\partial(x, y)}(1,1,-1)$ is invertible. The conclusion now follows from the implicit function theorem.

Problem 5

$5 \mathbf{a}$

Let $f \in C([-\pi, \pi], \mathbb{C})$ be a 2π-periodic function with Fourier coefficients $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}}$. Assume that

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left|\alpha_{n}\right|<\infty \tag{2}
\end{equation*}
$$

Show that the Fourier series of f converges uniformly to f.

5b

Conversely, show that if $\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}}$ is some sequence in \mathbb{C} satisfying (2), then the function f defined by

$$
\begin{equation*}
f(t)=\sum_{n \in \mathbb{Z}} \alpha_{n} e^{i n t} \quad \text { for } t \in[-\pi, \pi] \tag{3}
\end{equation*}
$$

is well-defined, continuous and 2π-periodic.
Hint: By "well-defined" we mean that the series (3) converges.

5c
Compute the Fourier series of the function $f(t)=t^{2}$, and explain why the Fourier series converges uniformly to f.
Hint: In $5 \mathrm{~b}, 5 \mathrm{c}$ you might need to use what you found in 5 a.

Solution:

5a

For each $n \in \mathbb{N}$, let $s_{n} \in C([-\pi, \pi], \mathbb{C})$ be the trigonometric polynomial $s_{n}(t)=\sum_{|k| \leqslant n} \alpha_{k} e^{i k t}$. Let $\varepsilon>0$ and let $N \in \mathbb{N}$ be such that
$\sum_{|k| \geqslant N}\left|\alpha_{k}\right|<\varepsilon$. Then for every $k, l \geqslant N$,

$$
\left|s_{k}(t)-s_{l}(t)\right| \leqslant \sum_{|m| \geqslant N}\left|\alpha_{m}\right|<\varepsilon
$$

Since the choice of N is independent of t, this proves that $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly to some function g, and since the convergence is uniform, g is continuous on $[-\pi, p i]$. The limit g is 2π-periodic since each s_{k} is: $g(-\pi)=\lim _{n \rightarrow \infty} s_{n}(-\pi)=\lim _{n \rightarrow \infty} s_{n}(\pi)=g(\pi)$. On the other hand, since f is continuous and 2π-periodic, we know that $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ converges in Césaro mean to f. This proves that $f=g$.

5b

By 5a, the series (3) converges uniformly, so f is well-defined. Since each partial sum is a trigonometric polynomial, and hence is both continuous and 2π-periodic, and the convergence is uniform, the same is true for the limit.

5c

We compute $\alpha_{n}=\int_{-\pi}^{\pi} t^{2} e^{-i n t} d t$. If $n=0$ then

$$
\alpha_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} t^{2}=\frac{\pi^{2}}{3}
$$

For $n \neq 0$ we get from repeated integration by parts

$$
\begin{aligned}
\alpha_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} t^{2} e^{-i n t} d t=\underbrace{\left[-\frac{1}{2 \pi i n} t^{2} e^{-i n t}\right]_{t=-\pi}^{\pi}}_{=0}+\frac{2}{2 \pi i n} \int_{-\pi}^{\pi} t e^{-i n t} d t \\
& =\left[-\frac{1}{\pi(i n)^{2}} t e^{-i n t}\right]_{t=-\pi}^{\pi}+\underbrace{\frac{1}{\pi(i n)^{2}} \int_{-\pi}^{\pi} e^{-i n t} d t}_{=0} \\
& =\frac{2(-1)^{n}}{n^{2}}
\end{aligned}
$$

Hence, the Fourier series of f is

$$
\frac{\pi^{2}}{3}+\sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \frac{2(-1)^{n}}{n^{2}} e^{i n t}
$$

The series (2) converges: Since $\left|\alpha_{n}\right| \leqslant \frac{2}{n^{2}}$ for $n \neq 0$ we get

$$
\sum_{n \in \mathbb{Z}}\left|\alpha_{n}\right| \leqslant \frac{\pi^{2}}{3}+2 \sum_{n \in \mathbb{N}} \frac{2}{n^{2}}<\infty
$$

since $\sum_{n \in \mathbb{N}} \frac{1}{n^{2}}$ converges. By problem 5a, we conclude that the Fourier series converges uniformly.

