UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT2400 — Real Analysis
Day of examination: 8-15 June 2020

This problem set consists of 6 pages.
Appendices: None

Permitted aids: Any

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note: There are in total 11 sub-problems (1, 2a, 2b, etc.), and you can get
up to 10 points for each sub-problem.

Problem 1

Let X be a normed vector space over R, let U C X be an open set and let
F: U — R be a (Fréchet) differentiable function.

e We say that a point a € U is a critical point if F'(a) = 0 (where 0
denotes the zero operator 0(z) = 0).

e We say that a point a € U is a local minimum (or local mazimum,)
if there is a neighborhood V of a where F(a) = mingecy F(x) (or
F(a) = max,ey F(x)).

Show that every local maximum/minimum is a critical point.

Solution: Let a € X be a local extremum, say, a local maximum.
Then F(a) > F(x) for all z in some neighborhood B(z;d). Since F is
Fréchet differentiable at a, it is Gateaux differentiable, with derivative

F/(a:r) = Jim F(a+ hr)— F(a)

for a e X.
h—0 h e

The numerator in this expression is non-positive for A small enough,
while the denominator h might be of either sign. It follows that the
limit must be zero,

F'(a;r)=0 VreX.

Hence, F'(a)(r) = F'(a;7) = 0 for all » € X, whence F'(a) = 0.

(Continued on page 2.)
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Problem 2

If X is a metric space and f: X — R is a function then the support of f is
the set supp f C X defined by

supp f = A4, where A={zxe X | f(z) #0}
(and A denotes the closure of A). Let C.(R,R) be the vector space

C.(R,R) ={f € C(R,R) | supp f is compact},

equipped with the supremum norm || - ||sup. (As usual, R is equipped with
the canonical norm |- |.)
2a

Show that every f € C.(R,R) is uniformly continuous.

2b

For any r € R, define the function A,: C.(R,R) — C.(R,R) by A,(f)(t) =
f(t+ 7). Show that A, is a bounded linear operator.

2c

We set now r = % for n € N. Show that the sequence {4/, }nen converges
pointwise to I, the identity operator on C.(R,R). In other words, show that
lim Ay, (f) = f for all f € C.(R,R).

n—oo

2d

Show that A/, does not converge to I in operator norm.
Hint: For every n € N, find a function f, € C.(R,R) with || f|lsup = 1 and

||fn - Al/n(fn)”sup = 1.

Solution:

2a

Let f € C.(R,R) and € > 0. Then supp f is compact, so there is some
bounded interval [a,b] such that supp f C [a,b]. Since f is continuous
on the compact set [a — 1,b + 1], it is uniformly continuous there, so
there is some ¢ > 0 such that |f(t) — f(s)] < e when t,s € [a — 1,0+ 1]
satisfy |t —s| < 6. If t,s € R satisfy |t — s| < min(d, 1) then either
t,s € [a—1,b+ 1], in which case |f(t) — f(s)| < e, or t,s ¢ [a,b], in
which case |f(t) — f(s)| = |0—0] < . Hence, it is uniformly continuous
on R.

2b

Ar(af +9)(#) = (af +9)(t+7) = af(t+7) +g(t +7) = a4 (f)() +
A, (g)(t), so A, is linear. For boundedness, ||A,(f)|lsup = supser | f(t +

)= [[fllsup, so [[All = 1.

<

(Continued on page 3.)
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2c

Let f € C.(R,R). Then f is uniformly continuous, so for every ¢ > 0
there is some 6 > 0 such that |f(t +r) — f(t)| < ¢ for all ¢ € R and
|r| < 6. Hence, also ||A1/n(f) — fllsup = supger | f(t+7) — f(t)| < €

when |1/n| < 6.
2d
We have

[Ar/n = Il = sup [A1/n () = fllsup-
FECRR), [ fllsup=1

We aim to show that ||A;/, — ||z > 1 for all n € N. For any n € N, let
fn € C.(R,R) be any function satisfying f,(0) = 0, f,(1/n) = 1, and
I fllc.r) =1, such as

t/n ifo<t<1l/n

1 ifl/n<t<1-1/n
1-t)/n fl-1/n<t<1
0 ift>1ort<O0.

Then HAl/nfn - ansup = 1 Thus,
HAI/” - IHE > ||A1/nfn - fn”sup =1.

It follows that A/, / I as n — oo.

Problem 3

Let p € [1,00) and let /P(R) be the vector space of all sequences {a;};en in
R such that |jal| < 0o, where

00 1/p
laller = (Z r) .
=1

3a

For each a € (P(R), let F(a) = b, where b is the sequence with components
b; = sin(a;) (for ¢ € N). Show that F'(a) € fP(R) for every a € (P(R).

3b

Show that F' is Fréchet differentiable, and that the Fréchet derivative is
given by
Fl(a)(r) = (cos(ai)ri)?; for r € (P(R).

Solution:

(Continued on page 4.)
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3a

Using the estimate |sin(a;)| < |a;|, we get

o
|1 E(a)||er = (Zysm (as)| ) < (Z\aiv)) = |la||er < 0.
=1

3b

Fix a € P(R). We claim that F'(a) = A, where A(r) = (cos(al)n) .
We show first that A is a bounded linear operator from ¢P(R) into itself.
First,

1/p 00 1/p
AT v r) <Z|COS a;)ril” ) < (Z\Mp> = [|Irller(m) < 00,
i=1

so A(r) € (P(R). It is clear that A is linear. Last, by the above estimate,
A is bounded with ||A]|z < 1. To show that F’(a) = A, we observe that
a Taylor expansion of ¢ — sin(t) yields

h2 " h2
1 R — < — 1 = —
|sin(t + h) — sin(t) — hcos(t)| < 5 r?gé(]sm (s)] 5

for any t, h € R. Next, we note that

00 1/p
1 .
il = (Irs17) 7 < (Z |7“z'\p) =|Irllpw VJj€EN
=1

for every r € P(R), and hence also [|7[|seo®) < ||7|er(r)- Hence,

(e.9]

1/p
|F(a+r)—F(a) — A(r)|le = <Z | sin(a; + ;) — sin(a;) — cos(ai)ri|7’>

i=1
00 l/p 00 1/p

< (Z !nf”) < sup |ri| (Z \n-\”) < 7l my-
i=1 i€N i=1

Thus, F'(a+ 1) — F(a) — A(r) = o(||r|ler) as 7 — 0, which proves the
claim.

Problem 4

Consider the system of equations

22 — 3zy + ¥t = —1
{ (1)

—2cos(x — y)z+ 2yt = 1.

Note that (z,y,2) = (1,1, —1) solves (1).

Show that there is an open interval (a,b) C
functions X,Y: (a,b) — R such that X(—-1) = 1,
that (X (z),Y(2), z) solves (1) for every z € (a,b).

R containing —1 and
Y(—1) = 1 and such

(Continued on page 5.)
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Solution: Define the function F: R® — R? by

2 _ y+z
F($,yjz):< 4 —3zy +e¥ti +1 )

—2cos(z —y)z + zy* — 1

and note that F(1,1,—1) = 0. The components of F' are smooth
functions of (z,y, 2), so F' is continuously differentiable. The Jacobian
with respect to (z,y) is

2r — 3 —3z + eVt
J(%y)F(l"y’z) = < Y > )

2sin(x — y)z —2sin(z — y)z + 4293

SO
-1 -2

This is an invertible matrix, so the bounded linear operator

%(1, 1,—1) is invertible. The conclusion now follows from the im-
plicit function theorem.

Problem 5

5a

Let f € C([—m,7],C) be a 2m-periodic function with Fourier coefficients
{an tnez. Assume that

Z loun| < o0. (2)

neE”L

Show that the Fourier series of f converges uniformly to f.

5b

Conversely, show that if {ay, }rez is some sequence in C satisfying (2), then
the function f defined by

ft) = Z ape™ for t € [-m, 7] (3)
nez

is well-defined, continuous and 27-periodic.
Hint: By “well-defined” we mean that the series (3) converges.

5c

Compute the Fourier series of the function f(¢) = 2, and explain why the
Fourier series converges uniformly to f.
Hint: In 5b, 5c you might need to use what you found in 5a.

Solution:

Ha

For each n € N, let s,, € C([—7, x|, C) be the trigonometric polynomial
sn(t) = Djkj<n are™. Let ¢ > 0 and let N € N be such that

(Continued on page 6.)
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> k>~ lak| < e. Then for every k,1 > N,

|sk(t) —si(B)| < Y loml <e.

Im|>=N

Since the choice of N is independent of ¢, this proves that {s,}nen
converges uniformly to some function g, and since the convergence is
uniform, g is continuous on [—,pi]. The limit g is 27-periodic since
each si is: g(—7) = limy—o0 Sp(—7) = limy, 00 Sn(m) = g(7). On the
other hand, since f is continuous and 27-periodic, we know that {s;, }nen
converges in Césaro mean to f. This proves that f = g.

5b

By b5a, the series (3) converges uniformly, so f is well-defined. Since each
partial sum is a trigonometric polynomial, and hence is both continuous
and 2m-periodic, and the convergence is uniform, the same is true for
the limit.

5c
We compute oy, = [7_t?e™" dt. If n = 0 then

1 /7r t2 7T2
ag = — = —.
07 or _7r 3

For n # 0 we get from repeated integration by parts

L " 9 _int 1 o imt|” 2 " int
Qy = — te " dt = | ————t“e " +— / te ™ dt
2 J_ . 2min i——  2min J_g

-~

=0

1 - 1 T
= [— _ 2te_mt] + — 2/ e " dt
A Tl

=0

Hence, the Fourier series of f is

2

™ 2(_1)n int
? I Z TL2 (& 0

nEL
n#0

The series (2) converges: Since |ay,| < & for n # 0 we get
2
us 2
Z\an\ = §+22ﬁ < 00
nez neN

since ), oy n—lz converges. By problem 5a, we conclude that the Fourier
series converges uniformly.




