UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad MAT2400 - Real Analysis
 Day of examination: 18 August 2021
 Examination hours: 09:00-13:00
 This problem set consists of 5 pages.
 Appendices:
 Permitted aids: Any

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points for each sub-problem, for a total of 100 points.

Problem 1. (10 points)
Consider \mathbb{R}^{2} equipped with the Euclidean norm $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and the corresponding metric $d(x, y)=\|x-y\|$. Define the unit circle $S=\left\{x \in \mathbb{R}^{2}\right.$: $\|x\|=1\}$. Explain why

- (S, d) is a metric space
- $(S,\|\cdot\|)$ is not a normed vector space.

Note: You may use the fact that $\left(\mathbb{R}^{2},\|\cdot\|\right)$ is a normed vector space.
Solution: S is a closed subset of \mathbb{R}^{2}, and a closed subset of a metric space always gives rise to a new metric space. Thus, (S, d) is a metric space.
$(S,\|\cdot\|)$ is not a normed vector space because S is not a vector space: If $x \in S$ then $2 x \notin S$.

Problem 2. (10 points)
Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{-x^{2}}$ is uniformly continuous.

Solution: We first note that f is continuous on \mathbb{R}, since it is the composition of the continuous functions $x \mapsto e^{x}$ and $x \mapsto-x^{2}$.

Let $\varepsilon>0$ and let $M>0$ be such that $|f(M-\varepsilon)|<\varepsilon$. (Such a number exists because $f(x) \rightarrow 0$ as $x \rightarrow \infty$.) Next, let $\delta>0$ be such that $|x-y|<\delta$ and $x, y \in[-M, M]$ implies $|f(x)-f(y)|<\varepsilon$ (such a δ exists because f is continuous, and hence uniformly continuous on the compact set $[-M, M]$). If now $x, y \in \mathbb{R}$ with $|x-y|<\delta$ then either

- $x, y \in[-M, M]$,
- $x, y \notin[-M+\delta, M-\delta]$.

In the first case we already know that $|f(x)-f(y)|<\varepsilon$. In the second case we also know that $|x|,|y| \geqslant M-\varepsilon$, so $|f(x)| \leqslant|f(M-\varepsilon)|<\varepsilon$, and likewise for y. Since $f(x), f(y)>0$ we then get $|f(x)-f(y)|<\varepsilon$.

Alternatively: We note that f is Lipschitz: $\frac{d f}{d x}(x)=-2 x e^{-x^{2}}$, which is a bounded function (its extrema lie at $x= \pm 1 / \sqrt{2}$, where $\left.\left|\frac{d f}{d x}(x)\right|=\sqrt{2} e^{-1 / 2}\right)$, so in particular, f is Lipschitz. This concludes the proof, since every Lipschitz function is also uniformly continuous.

Problem 3. (20 points)
Fix some $p \in[1, \infty]$ and let $x \in \ell^{p}(\mathbb{R})$ with components $x=(x(1), x(2), \ldots)$.
Define $y_{n}=(x(1), x(2), \ldots, x(n), 0,0,0, \ldots)$ for every $n \in \mathbb{N}$, so that

$$
y_{1}=(x(1), 0,0,0, \ldots), \quad y_{2}=(x(1), x(2), 0,0,0, \ldots),
$$

and so on.
(a) Explain why $y_{n} \in \ell^{p}(\mathbb{R})$ for every $n \in \mathbb{N}$. Show that if $p<\infty$ then $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy.
(b) Is the same true for $p=\infty$? If yes, prove it. If no, provide a counterexample.

Solution:

(a) Since y_{n} has only finitely many nonzero elements, its ℓ^{p} norm is automatically finite. If $x \in \ell^{p}$ then $\sum_{i=1}^{\infty}|x(i)|^{p}<\infty$. For an $\varepsilon>0$, let $N \in \mathbb{N}$ be such that $\sum_{i=N}^{\infty}|x(i)|^{p}<\varepsilon$. If $m, n \geqslant N$ and, say, $m<n$ then

$$
\left\|y_{n}-y_{m}\right\|_{\ell^{p}}^{p}=\sum_{i=m+1}^{n}|x(i)|^{p} \leqslant \sum_{i=N}^{\infty}|x(i)|^{p}<\varepsilon .
$$

Hence, $\left\{y_{n}\right\}_{n}$ is Cauchy.
(b) No. Let $x=(1,1,1, \ldots)$. Then $\|x\|_{\ell_{\infty}}=1$, so $x \in \ell^{\infty}$, but if $n \neq m$ then

$$
\left\|y_{n}-y_{m}\right\|_{\ell \infty}=\|(0, \ldots, 0,1, \ldots, 1,0, \ldots)\|_{\ell^{\infty}}=1 .
$$

Hence, $\left\{y_{n}\right\}_{n}$ cannot possibly be Cauchy.

Problem 4. (10 points)
Let $X=C([0,1], \mathbb{R})$ be equipped with the supremum metric $d_{\infty}(f, g)=$ $\sup _{t \in[0,1]}|f(t)-g(t)|$. Let $L: X \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
L(p)=0 \quad \text { for all polynomials } p
$$

Show that $L(f)=0$ for all $f \in X$.
Solution: Let $f \in X$. By Weierstrass' approximation theorem, there is a sequence of polynomials $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ such that $p_{n} \rightarrow f$ as $n \rightarrow \infty$. Since L is continuous, we get $L(f)=\lim _{n \rightarrow \infty} L\left(p_{n}\right)=\lim _{n \rightarrow \infty} 0=0$.

Problem 5. (20 points)
Let $X=C([0,2], \mathbb{R})$, equipped with the supremum norm $\|f\|_{\infty}=$
$\sup _{t \in[0,2]}|f(t)|$, and let $Y=C([0,1], \mathbb{R})$, equipped with the L^{1} norm $\|g\|_{1}=\int_{0}^{1}|g(t)| d t$.
(a) Show that $L: X \rightarrow Y$, defined by

$$
L(f)=g, \quad \text { where } g(t)=f(2 t) \forall t \in[0,1]
$$

is a bounded linear functional.
(b) Show that L is bijective, but that the inverse $L^{-1}: Y \rightarrow X$ is unbounded.

Solution:

(a) For linearity, we have for any $\alpha \in \mathbb{R}$ and $f, g \in X$

$$
\begin{aligned}
L(\alpha f+g)(t) & =(\alpha f+g)(2 t)=\alpha f(2 t)+g(2 t) \\
& =\alpha L(f)(t)+L(g)(t)=(\alpha L(f)+L(g))(t)
\end{aligned}
$$

for all t, so $L(\alpha f+g)=\alpha L(f)+L(g)$.
For boundedness, we have

$$
\|L(f)\|_{1}=\int_{0}^{1}|f(2 t)| d t \leqslant \int_{0}^{1}\|f\|_{\infty} d t=\|f\|_{\infty}
$$

so L is bounded with $\|L\|_{\mathcal{L}} \leqslant 1$.
(b) L is clearly bijective, since $L(f)=g$ if and only if $f(t)=g(t / 2)$ $\forall t \in[0,2]$. To see that L^{-1} is unbounded, let $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ be the sequence

$$
g_{n}(t)= \begin{cases}n-n^{2} t & 0 \leqslant t<1 / n \\ 0 & 1 / n \leqslant t \leqslant 1\end{cases}
$$

Then $\left\|g_{n}\right\|_{1}=1$ for all $n \in \mathbb{N}$, while $\left\|f_{n}\right\|_{\infty}=g_{n}(0)=n$. Hence, there exists no constant $C>0$ such that $\left\|L^{-1}\left(g_{n}\right)\right\|_{\infty} \leqslant C\left\|g_{n}\right\|_{1}$, so L^{-1} is unbounded.

Problem 6. (20 points)
Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x)=\binom{x_{1}^{3}\left(x_{2}+1\right)-x_{2}^{2}}{x_{1}-x_{2}^{5}} \quad \forall x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}
$$

(a) Show that F is everywhere Fréchet differentiable, and that

$$
F^{\prime}(x)(h)=\left(\begin{array}{cc}
3 x_{1}^{2}\left(x_{2}+1\right) & x_{1}^{3}-2 x_{2} \\
1 & -5 x_{2}^{4}
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \forall x, h \in \mathbb{R}^{2}
$$

(b)
(i) It's difficult, or impossible, to find a formula for F^{-1} (if it exists at all). Why?
(ii) Let

$$
b=\binom{1}{1}, \quad c=\binom{1}{0}
$$

and note that $F(b)=c$. Show that there is a neighbourhood U of b and a neighbourhood V of c such that $F: U \rightarrow V$ is bijective. Compute $\left(F^{-1}\right)^{\prime}(c)$.

Solution:

(a) A function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is Fréchet differentiable if its Jacobian exists and is continuous everywhere, in which case $F^{\prime}(x)(h)=D F(x) h$. Its Jacobian is

$$
D F(x)=\left(\begin{array}{cc}
3 x_{1}^{2}\left(x_{2}+1\right) & x_{1}^{3}-2 x_{2} \\
1 & -5 x_{2}^{4}
\end{array}\right)
$$

Each entry is a polynomial, so $D F$ is continuous, and $F^{\prime}(x)(h)=$ $D F(x) h$.
(b) Inverting F would involve inverting a system of fifth order polynomials, which in general is impossible.

We have

$$
F^{\prime}(b)(h)=\left(\begin{array}{ll}
6 & -1 \\
1 & -5
\end{array}\right) h
$$

which is invertible, since the Jacobian is invertible:

$$
D F(b)^{-1}=\frac{1}{-29}\left(\begin{array}{ll}
-5 & 1 \\
-1 & 6
\end{array}\right)
$$

The inverse function theorem then guarantees the existence of neighbourhoods U, V such that $F: U \rightarrow V$ is bijective and

$$
\left(F^{-1}\right)^{\prime}(c)(h)=\left(F^{\prime}(b)\right)^{-1}(h)=\frac{1}{-29}\left(\begin{array}{ll}
-5 & 1 \\
-1 & 6
\end{array}\right) h
$$

Problem 7. (10 points)
A bounded linear operator $L: X \rightarrow Y$ is compact if $\left\{L\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ has a convergent subsequence whenever $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence in X.

Let $X=Y=C([-\pi, \pi], \mathbb{R})$ equipped with the supremum metric, and for some fixed $N \in \mathbb{N}$, let L be the Fourier projection

$$
L(u)(t)=\sum_{n=-N}^{N} \alpha_{n} e^{i n t} \quad \forall t \in[-\pi, \pi], u \in X
$$

where $\alpha_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u(s) e^{-i n s} d s$ is the nth Fourier coefficient of u. Show that L is a bounded, compact operator. (You do not need to show that L is linear.)

Hint: Apply the Arzela-Ascoli theorem.

Solution: L is bounded: We have $\left|\alpha_{n}\right| \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|u(s) \| e_{n}(-s)\right| d s \leqslant$ $\|u\|_{\infty}$, so

$$
\|L(u)\|_{\infty} \leqslant \sum_{n=-N}^{N}\left|\alpha_{n}\right|\left\|e_{n}\right\|_{\infty} \leqslant(2 N+1)\|u\|_{\infty} .
$$

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in X. We claim that $\left\{L\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ is equicontinuous. Indeed,
$\left|\frac{d}{d t} L\left(u_{n}\right)(t)\right|=\left|\sum_{n=-N}^{N} \alpha_{n} i n e^{i n t}\right| \leqslant \sum_{n=-N}^{N}\|u\|_{\infty} n\left\|e_{n}\right\|_{\infty} \leqslant(2 N+1) N\|u\|_{\infty}$,
so $\left\{L\left(u_{n}\right)\right\}_{n}$ is uniformly Lipschitz, and hence equicontinuous. It follows that $\left\{L\left(u_{n}\right)\right\}_{n}$ is a bounded, equicontinuous sequence in $Y=$ $C([0,1], \mathbb{R})$, so by Arzela-Ascoli, it has a convergent subsequence. We conclude that L is compact.

