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Exam in: MAT2400 –– Real Analysis

Day of examination: 18 August 2021

Examination hours: 09:00 – 13:00

This problem set consists of 5 pages.

Appendices: None

Permitted aids: Any

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note: There are in total 10 sub-problems, and you can get up to 10 points
for each sub-problem, for a total of 100 points.

Problem 1. (10 points)
Consider R2 equipped with the Euclidean norm ∥x∥ =

√
x21 + x22 and the

corresponding metric d(x, y) = ∥x−y∥. Define the unit circle S = {x ∈ R2 :
∥x∥ = 1}. Explain why

• (S, d) is a metric space

• (S, ∥ · ∥) is not a normed vector space.

Note: You may use the fact that (R2, ∥ · ∥) is a normed vector space.

Solution: S is a closed subset of R2, and a closed subset of a metric
space always gives rise to a new metric space. Thus, (S, d) is a metric
space.

(S, ∥·∥) is not a normed vector space because S is not a vector space:
If x ∈ S then 2x /∈ S.

Problem 2. (10 points)
Prove that the function f : R → R defined by f(x) = e−x2

is uniformly
continuous.

Solution: We first note that f is continuous on R, since it is the
composition of the continuous functions x 7→ ex and x 7→ −x2.

Let ε > 0 and let M > 0 be such that |f(M − ε)| < ε. (Such a
number exists because f(x) → 0 as x → ∞.) Next, let δ > 0 be such
that |x− y| < δ and x, y ∈ [−M,M ] implies |f(x)− f(y)| < ε (such a δ
exists because f is continuous, and hence uniformly continuous on the
compact set [−M,M ]). If now x, y ∈ R with |x− y| < δ then either

• x, y ∈ [−M,M ],

• x, y /∈ [−M + δ,M − δ].

(Continued on page 2.)
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In the first case we already know that |f(x)− f(y)| < ε. In the second
case we also know that |x|, |y| ⩾ M − ε, so |f(x)| ⩽ |f(M − ε)| < ε, and
likewise for y. Since f(x), f(y) > 0 we then get |f(x)− f(y)| < ε.

Alternatively: We note that f is Lipschitz: df
dx(x) = −2xe−x2

,

which is a bounded function (its extrema lie at x = ±1/
√
2, where

| dfdx(x)| =
√
2e−1/2), so in particular, f is Lipschitz. This concludes the

proof, since every Lipschitz function is also uniformly continuous.

Problem 3. (20 points)
Fix some p ∈ [1,∞] and let x ∈ ℓp(R) with components x = (x(1), x(2), . . . ).
Define yn =

(
x(1), x(2), . . . , x(n), 0, 0, 0, . . .

)
for every n ∈ N, so that

y1 =
(
x(1), 0, 0, 0, . . .

)
, y2 =

(
x(1), x(2), 0, 0, 0, . . .

)
,

and so on.

(a) Explain why yn ∈ ℓp(R) for every n ∈ N. Show that if p < ∞ then
{yn}n∈N is Cauchy.

(b) Is the same true for p = ∞? If yes, prove it. If no, provide a
counterexample.

Solution:

(a) Since yn has only finitely many nonzero elements, its ℓp norm is
automatically finite. If x ∈ ℓp then

∑∞
i=1 |x(i)|p < ∞. For an ε > 0, let

N ∈ N be such that
∑∞

i=N |x(i)|p < ε. If m,n ⩾ N and, say, m < n
then

∥yn − ym∥pℓp =
n∑

i=m+1

|x(i)|p ⩽
∞∑

i=N

|x(i)|p < ε.

Hence, {yn}n is Cauchy.

(b) No. Let x = (1, 1, 1, . . . ). Then ∥x∥ℓ∞ = 1, so x ∈ ℓ∞, but if n ̸= m
then

∥yn − ym∥ℓ∞ = ∥(0, . . . , 0, 1, . . . , 1, 0, . . . )∥ℓ∞ = 1.

Hence, {yn}n cannot possibly be Cauchy.

Problem 4. (10 points)
Let X = C([0, 1],R) be equipped with the supremum metric d∞(f, g) =
supt∈[0,1] |f(t)− g(t)|. Let L : X → R be a continuous function satisfying

L(p) = 0 for all polynomials p.

Show that L(f) = 0 for all f ∈ X.

Solution: Let f ∈ X. By Weierstrass’ approximation theorem, there
is a sequence of polynomials {pn}n∈N such that pn → f as n → ∞.
Since L is continuous, we get L(f) = limn→∞ L(pn) = limn→∞ 0 = 0.

Problem 5. (20 points)
Let X = C([0, 2],R), equipped with the supremum norm ∥f∥∞ =

(Continued on page 3.)



Exam in MAT2400, 18 August 2021 Page 3

supt∈[0,2] |f(t)|, and let Y = C([0, 1],R), equipped with the L1 norm

∥g∥1 =
∫ 1
0 |g(t)| dt.

(a) Show that L : X → Y , defined by

L(f) = g, where g(t) = f(2t) ∀t ∈ [0, 1],

is a bounded linear functional.

(b) Show that L is bijective, but that the inverse L−1 : Y → X is unbounded.

Solution:

(a) For linearity, we have for any α ∈ R and f, g ∈ X

L(αf + g)(t) = (αf + g)(2t) = αf(2t) + g(2t)

= αL(f)(t) + L(g)(t) = (αL(f) + L(g))(t)

for all t, so L(αf + g) = αL(f) + L(g).
For boundedness, we have

∥L(f)∥1 =
∫ 1

0
|f(2t)| dt ⩽

∫ 1

0
∥f∥∞ dt = ∥f∥∞,

so L is bounded with ∥L∥L ⩽ 1.

(b) L is clearly bijective, since L(f) = g if and only if f(t) = g(t/2)
∀t ∈ [0, 2]. To see that L−1 is unbounded, let {gn}n∈N be the sequence

gn(t) =

{
n− n2t 0 ⩽ t < 1/n

0 1/n ⩽ t ⩽ 1.

Then ∥gn∥1 = 1 for all n ∈ N, while ∥fn∥∞ = gn(0) = n. Hence, there
exists no constant C > 0 such that ∥L−1(gn)∥∞ ⩽ C∥gn∥1, so L−1 is
unbounded.

Problem 6. (20 points)
Let F : R2 → R2 be given by

F (x) =

(
x31(x2 + 1)− x22

x1 − x52

)
∀x =

(
x1
x2

)
∈ R2.

(a) Show that F is everywhere Fréchet differentiable, and that

F ′(x)(h) =

(
3x21(x2 + 1) x31 − 2x2

1 −5x42

)(
h1
h2

)
∀x, h ∈ R2.

(b)

(i) It’s difficult, or impossible, to find a formula for F−1 (if it exists at
all). Why?

(Continued on page 4.)
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(ii) Let

b =

(
1
1

)
, c =

(
1
0

)
and note that F (b) = c. Show that there is a neighbourhood U of b and
a neighbourhood V of c such that F : U → V is bijective. Compute
(F−1)′(c).

Solution:

(a) A function F : R2 → R2 is Fréchet differentiable if its Jacobian
exists and is continuous everywhere, in which case F ′(x)(h) = DF (x)h.
Its Jacobian is

DF (x) =

(
3x21(x2 + 1) x31 − 2x2

1 −5x42

)
.

Each entry is a polynomial, so DF is continuous, and F ′(x)(h) =
DF (x)h.

(b) Inverting F would involve inverting a system of fifth order
polynomials, which in general is impossible.

We have

F ′(b)(h) =

(
6 −1
1 −5

)
h

which is invertible, since the Jacobian is invertible:

DF (b)−1 =
1

−29

(
−5 1
−1 6

)
.

The inverse function theorem then guarantees the existence of
neighbourhoods U , V such that F : U → V is bijective and

(F−1)′(c)(h) = (F ′(b))−1(h) =
1

−29

(
−5 1
−1 6

)
h.

Problem 7. (10 points)
A bounded linear operator L : X → Y is compact if {L(un)}n∈N has a
convergent subsequence whenever {un}n∈N is a bounded sequence in X.

Let X = Y = C([−π, π],R) equipped with the supremum metric, and
for some fixed N ∈ N, let L be the Fourier projection

L(u)(t) =
N∑

n=−N

αne
int ∀t ∈ [−π, π], u ∈ X

where αn = 1
2π

∫ π
−π u(s)e

−ins ds is the nth Fourier coefficient of u. Show
that L is a bounded, compact operator. (You do not need to show that L
is linear.)

Hint: Apply the Arzela–Ascoli theorem.

(Continued on page 5.)
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Solution: L is bounded: We have |αn| ⩽ 1
2π

∫ π
−π |u(s)||en(−s)| ds ⩽

∥u∥∞, so

∥L(u)∥∞ ⩽
N∑

n=−N

|αn|∥en∥∞ ⩽ (2N + 1)∥u∥∞.

Let {un}n∈N be a bounded sequence in X. We claim that {L(un)}n∈N
is equicontinuous. Indeed,∣∣∣∣ ddtL(un)(t)

∣∣∣∣ =
∣∣∣∣∣

N∑
n=−N

αnine
int

∣∣∣∣∣ ⩽
N∑

n=−N

∥u∥∞n∥en∥∞ ⩽ (2N+1)N∥u∥∞,

so {L(un)}n is uniformly Lipschitz, and hence equicontinuous. It
follows that {L(un)}n is a bounded, equicontinuous sequence in Y =
C([0, 1],R), so by Arzela–Ascoli, it has a convergent subsequence. We
conclude that L is compact.


