As you will have noticed, most of the results in the textbook are not proved. This is a conscious decision by the author — he wants to teach the students to make their own proofs. This plan depends on the fact that many of the proofs in volume 2 are very similar to proofs in volume 1. As we have not covered volume 1, the plan is overly ambitious in our case, and I have therefore decided to provide proofs of many (but far from all) the results in the book. I have concentrated on the results that are essential for the understanding of the theory, leaving many of the more “applied” results for the problem sessions.

Notation: I shall use the traditional notation \(\{x_n\} \) for sequences instead of the author’s choice \((x^{(n)}) \).

Proposition 12.1.20

If the sequence \(\{x_n\} \) converges to both \(x \) and \(x' \), then \(\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x_n, x') = 0 \). By the Triangle Inequality and Symmetry

\[
d(x, x') \leq d(x, x_n) + d(x_n, x') \to 0 + 0 = 0
\]

and hence \(d(x, x') = 0 \). By Positivity, \(x = x' \).

Proposition 12.2.10

It suffices to prove \((a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) \) as we can then prove all implications by moving around the circle.

\((a) \Rightarrow (b) \): Assume that \(x_0 \) is an adherent point of \(E \). Then \(B(x_0, r) \cap E \neq \emptyset \) for all \(r \). Consequently, \(x_0 \) is not an exterior point, and the only remaining options are that \(x_0 \) is an interior point or a boundary point.

\((b) \Rightarrow (c) \): Assume that \(x_0 \) is an interior point or a boundary point. In either case, the set \(B(x_0, \frac{1}{n}) \cap E \) is nonempty and contains an element \(x_n \). Since \(d(x_0, x_n) < \frac{1}{n} \), we have a sequence \(\{x_n\} \) of points from \(E \) converging to \(x_0 \).

\((c) \Rightarrow (a) \): Assume that \(\{x_n\} \) is a sequence from \(E \) converging to \(x_0 \). Then for every \(r > 0 \), there is an \(N \in \mathbb{N} \) such that \(d(x_0, x_n) < r \) for all \(n \geq N \). This implies that \(B(x_0, r) \cap E \) is nonempty for all \(r > 0 \), and hence \(x_0 \) is an adherent point of \(E \).
Lemma 12.4.3
Given an $\epsilon > 0$, we must show that there is an $J \in \mathbb{N}$ such that $d(x_{n_j}, x_0) < \epsilon$ whenever $j \geq J$. Since the original sequence $\{x_n\}$ converges to x_0, there is an $N \in \mathbb{N}$ such that $d(x_n, x_0) < \epsilon$ whenever $n \geq N$. Choose J such that $n_j \geq N$. Then $d(x_{n_j}, x_0) < \epsilon$ whenever $j \geq J$ (since $n_j \geq n, j \geq N$ whenever $j \geq J$).

Proposition 12.4.5
Assume first that L is a limit point of $\{x_n\}$. Define an increasing sequence $n_1 < n_2 < \ldots < n_k < \ldots$ of natural numbers as follows: n_1 is the smallest number in \mathbb{N} such that $d(x_{n_1}, L) < 1$; n_2 is the smallest number larger than n_1 such that $d(x_{n_2}, L) < 1/2$; n_3 is the smallest number larger than n_2 such that $d(x_{n_3}, L) < 1/3$ etc. Since L is a limit point, it is always possible to continue this procedure, and the subsequence $\{x_{n_j}\}$ converges to L since $d(x_{n_j}, L) < 1/j$.

Assume next that $\{x_{n_j}\}$ is a subsequence converging to L. To show that L is a limit point, we must show that for any $\epsilon > 0$ and $N \in \mathbb{N}$, there in an $n \geq N$ such that $d(x_n, L) < \epsilon$. Since the subsequence $\{x_{n_j}\}$ converges to L, we can find a $J \in \mathbb{N}$ such that $d(x_{n_j}, L) < \epsilon$ whenever $j \geq J$. Choose $n = n_j$ where $j \geq J$ and $n_j \geq N$. Then $n \geq N$, $d(x_n, L) < \epsilon$ and hence L is a limit point.

Lemma 12.4.7
We must show that for each $\epsilon < 0$ there is an $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $n, m \geq N$. Since $\{x_n\}$ converges to x_0, there is an $N \in \mathbb{N}$ such that $d(x_n, x_0) < \frac{\epsilon}{2}$ for all $n \geq N$. If $n, m \geq N$, we thus have

$$d(x_n, x_m) \leq d(x_n, x_0) + d(x_0, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

by the Triangle Inequality, and hence $\{x_n\}$ is a Cauchy sequence.

Lemma 12.4.9
We must show that for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $d(x_n, x_0) < \epsilon$ whenever $n \geq N$. Since $\{x_n\}$ is a Cauchy sequence, there is an $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon/2$ for all $n, m \geq N$. Since the subsequence converges to x_0, there is an $n_j \geq N$ such that $d(x_{n_j}, x_0) < \epsilon/2$. By the Triangle Inequality, we have

$$d(x_n, x_0) \leq d(x_n, x_{n_j}) + d(x_{n_j}, x_0) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $n \geq N$.
Proposition 12.5.5

We shall argue contrapositively. First we assume that \(X \) is unbounded, and prove that it is not compact; then we assume that \(X \) is not complete, and prove that it is not compact.

Assume that \(X \) is unbounded. Pick a point \(x \in X \), then all the sets \(B(x, n) \) are nonempty, and if we pick a point \(x_n \) in each, we get a sequence such that \(d(x, x_n) \to \infty \). For any subsequence \(\{x_{n_j}\} \), we must also have \(d(x, x_{n_j}) \to \infty \). It suffices to prove that no such subsequence can converge. Assume for contradiction that it does converge to some point \(y \). Then by the Triangle Inequality we have

\[
d(x, x_{n_j}) \leq d(x, y) + d(y, x_{n_j}) \to d(x, y)
\]

which is absurd since \(d(x, x_{n_j}) \to \infty \).

Assume now that \(X \) is not complete, and let \(\{x_n\} \) be a Cauchy sequence that does not converge. If \(\{x_n\} \) had a subsequence converging to some point \(x \), then \(\{x_n\} \) would also converge to \(x \) according to Lemma 12.4.9. Hence \(\{x_n\} \) cannot have a convergent subsequence, and consequently \(X \) is not compact.

Corollary 12.5.6

Boundedness follows immediately from Proposition 12.5.5, and closedness follows from the same proposition pluss the following argument which shows that only closed subspaces are complete: If \(Y \) is not closed, choose a point \(a \in Y \setminus X \). Then there is a sequence \(\{y_n\} \) from \(Y \) converging to \(a \). This is a Cauchy sequence in \(Y \) that does not converge to a point in \(Y \), and hence \(Y \) is not complete.

Theorem 12.5.7

We already know that a compact set has to be closed and bounded, and only need to prove that a closed and bounded subset \(E \) of \(\mathbb{R}^m \) is always compact. Let \(d \) be any of the three metrics in the theorem. We must show that a sequence \(\{x_n\} \) of points in \(E \) always has a subsequence converging in the \(d \)-metric to a point in \(E \).

Since \(E \) is bounded, we can find numbers \(a, b \) such that \(E \) is contained in the \(m \) dimensional cube \(K_0 = [a, b]^m \). We can cut \(K_0 \) into \(2^m \) closed cubes whose sides are half the length of the sides of \(K_0 \). At least one of these smaller cubes must contain infinitely many of the terms in the sequence \(\{x_n\} \). Call this cube \(K_1 \) (if there is more than one such cube, just choose one of them). We now cut \(K_1 \) into \(2^m \) smaller cubes in exactly the same way, and find a new cube \(K_2 \) whose sides are half the length of the sides of \(K_1 \), and which contains infinitely many terms of the sequence.
Continuing the procedure, we get a nested sequence of \(m \)-dimensional cubes \(\{ K_n \} \), each half the size of the previous, and each containing infinitely many of the elements in the sequence \(\{ x_n \} \). To construct a convergent subsequence, we choose natural numbers \(n_1 < n_2 < \ldots < n_j < \ldots \) by the following procedure: Let \(n_1 \) be the smallest number such that \(x_{n_1} \in K_1 \); let \(n_2 \) be the smallest number larger than \(n_1 \) such that \(x_{n_2} \in K_2 \); let \(n_3 \) be the smallest number larger than \(n_2 \) such that \(x_{n_3} \in K_3 \) etc. Since each cube \(K_n \) contains infinitely many terms from the sequence, it is always possible to carry out this procedure.

We now have a subsequence \(\{ x_{n_j} \} \) such that \(x_{n_j} \in K_j \) for each \(j \). As the size of the cubes decreases to zero, \(\{ x_{n_j} \} \) is a Cauchy sequence in the \(d \)-metric (regardless of which of the metrics in the theorem \(d \) is), and since \(\mathbb{R}^m \) is complete, \(\{ x_{n_j} \} \) converges to a point \(x \in \mathbb{R}^m \). Since \(E \) is closed, \(x \in E \).

This shows that any sequence from \(E \) has a subsequence which converges to a point in \(E \), and hence \(E \) is compact.

Corollary 12.5.9

Assume for contradiction that \(\bigcap_{n=1}^{\infty} K_n = \emptyset \). Then the family \(\{ K_n^c \}_{n \in \mathbb{N}} \) forms an open cover of the compact set \(K_1 \) (in fact, they cover all of \(X \)), and according to Theorem 12.5.8, there must be a finite subcover \(K_n^c_1, \ldots, K_n^c_k \) where \(n_1 < n_2 < \ldots < n_k \). Since the original sequence \(\{ K_n \} \) is decreasing, the sequence \(\{ K_n^c \} \) of complements is increasing, and hence \(K_n^c_{n_k} = K_n^c_1 \cup K_n^c_2 \cup \ldots \cup K_n^c_{n_k} \supset K_1 \). But this is impossible since \(K_{n_k} \) is a nonempty subset of \(K_1 \).

Theorem 12.5.10a

We already know that a compact set needs to be closed, and hence it suffices to prove that a closed subset \(Z \) of a compact set \(Y \) is compact. Assume that \(\{ x_n \} \) is a sequence in \(Z \). Since \(Z \subset Y \) and \(Y \) is compact, \(\{ x_n \} \) has a subsequence converging to a point \(y \in Y \). Since \(Z \) is closed, \(y \in Z \), and hence any sequence in \(Z \) has a subsequence converging to an element in \(Z \). This means that \(Z \) is compact.