MAT2400: Mandatory Assignment I, Spring 2014:
Solution

Problem 1. We use induction on n. For n = 1 the statement is obvious, and
for n = 2 it is the triangle inequality. Assume that the statement holds for
n =k, ie.

d(zy,2r) < d(z1,22) + d(x2,23) + - - + d(T)—1, TK)
Adding d(x, zk+1) on both sides, we get
d(zy,xk) + d(xg, Tr1) < d(x1,22) + d(x9,23) + - -+ + d(Tk—1, k) + d(Tk, Tlt1)
By the triangle inequality
d(z1,2p41) < d(x1,2) + d(Tk, Tre1)
and hence
d(z1, k1) < d(x1,29) + d(x9,23) + - + d(T—1, k) + d(Tk, Tl11)

This shows that the statement holds for n = k£ + 1 and concludes the induction
argument.

Problem 2. a) For 0 <z < 1, 2™ — 0 as n — 0o, and hence
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for such z. For z > 1, 2™ — oo as n — oo, and hence

1—2z
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for such z. Finally, for x = 1, f,,(z) = 0 for all n and hence lim,,_, o frn(z) =
0 =1 — z also in this case.

b) Each f, is differentiable at x = 1 as we can use the quotient rule to
compute the derivative. The limit function is not differentiable at z =1 as
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and hence the two-sided limit lim,_,q % does not exist.

c) For z € [0, 1], we have
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where we in the last step have used that 1 4+ 2™ > 1.
Here are two different proofs of uniform continuity:

< (1—z)z"

Alternative I: Assume that ¢ > 0 is given and choose N € N so large that
(1 —¢€)N <e. For n > N, we then have

(I-z)(1—€"<e when0<z<l—c¢

|f(z) = fa(2) < (1 —2)2" <

ex” < e whenl —e<z <1

This shows that {f,} converges uniformly to f on [0, 1].
Alternative II: Another way to prove uniform convergence, is to show that

sup{|f(z) — fn(x)| : z€]0,1]} -0 asn— ©
Since |f(z) — fo(2)] < (1 — x)z™, it suffices to show that

sup{(1 —z)z" : z€[0,1]} =0 asn— o0

The last supremum we can find by differentiating g, (r) = (1—x)2™ = 2" —z"+1.
We get ¢/, (z) = na"~! — (n + 1) " and it’s easy to use this to check that the

maximum of g, is at T = nd that the maximum value is g, (;57) =
(1- nLH)(nLH)” = ( )" < . Hence

1
sup{|f(z) — fu(x)] : ©€[0,1]} <sup{(1 —z)z" : z €[0,1]} < g —0
n
as n — oo. This proves uniform convergence.

Problem 3. a) The idea is to keep the track and change the parametrization.

Note that the function
u(t) = b= (t —c)
d—

maps the interval [, d] continuously onto [a, b] (the graph of u is just the straight
line through the points (¢, a) and (d, b).) Hence

P(t) =r(u(t)), te€led,

is a continuous path that runs through exactly the same values as

r(t), te€la,b],

and the two paths connect the same points. (Note that # is continuous as it is
the composition of the two continuous functions r and u.)

b) We have to check the three properties of an equivalence relation:



(i) Reflexivity: We have x ~ x since the path that stands still at « connects
x to x (i.e. the path r(t) = z for all x € [a, b]).

(ii) Symmetry: Assume that r : [a,b] — X is a path connecting x to y. Then
7(s)=r(b+a—2s)), s € [a,b], is a path connecting y to = (7 is just r run
backwards). Hence x ~ y implies y ~ x.

(iii) Transitivity: Assume x ~ y and y ~ z. Then there are paths r; and
ro connecting x to y and y to z, respectively. By a) we may choose the
parametrizations such that r1 : [0,1] — X and r : [1,2] — X, and hence
r:[0,2] — X defined by

m(t) iftelo,1]

r(t) =
rao(t) ifte[1,2]

is a path connecting z to z, i.e. x ~ z (note that r is continuous at 1 since
r1(1) = 72(1) and r; and ry are continuous).

¢) Assume that P is a component and z,y € P. We must show that there
is a path from x to y that lies entirely in P. Since x and y belong to the same
component P, x ~ y and hence there is a path 7 : [a,b] — X in X that connects
z to y. Any point z on this path is connected to x by a part of the path, and
hence z € P. (More precisely: Since z is on the path, z = r(c) for some ¢ € [a, b],
and hence r : [a,c] — X is a path connecting z to z). This shows that the path
r lies entirely in P, and hence P is path-connected.

d) Pick z € C and let [z] be the component of z. If y is in C, there is a
path in C' connecting x to y (here we are using that C' is path-connected), and
consequently y € [z]. Hence C' is a subset of the component [z].

e) Let u,v € f(C), then there exist points z,y € C such that f(z) = u
and f(y) = v. Since C is path-connected, there is a path r in C' connecting
x and y, and 7(t) = f(r(t)) is a path in f(C) connecting v and v (Note that
7 is continuous as it is the composition of the two continuous functions f and r.)

f) Assume for contradiction that {z,y} is path-connected. There must then
be a path r in {z,y} connecting = to y. Let s = inf{¢ : 7(t) = y}. Since r is a
path in {z,y}, r(s) is either z or y.

Assume first that r(s) = y. Then s # 0 (since r(0) = x) and x(¢) = « for all
t < s. If {t,} is a sequence increasing to t, we get y = r(s) = lim, 00 7(tn) =
lim,,_, o * = x by continuity of r. This is a contradiction.

Assume next that r(s) = z. Then s # 1 (since (1) = y), and by definition
of s there must for each n € N be a point ¢,,, s < ¢, < s+%, such that r(¢,) = y.
But then z = r(s) = lim,, o0 7(¢,,) = lim, 00 ¥y = y by continuity of r. This is
again a contradiction, and since there are no other alternatives, {z,y} cannot
be path-connected.



g) Here is the silliest example: Let X = {z,y}, Y = {u} both have the
discrete metric, and let f : X — Y be the only function from X to Y. Then
X = f71(Y) is not path-connected according to f) above, but Y obviously is.

To get a slightly less silly version of the same idea, let X =Y = R and
put f(z) = 22. Then D = {1} is path-connected, but f~1(D) = {—1,1} is not
according to f).



