MAT2400: Mandatory Assignment I, Spring 2014: Solution

Problem 1. We use induction on n. For $n=1$ the statement is obvious, and for $n=2$ it is the triangle inequality. Assume that the statement holds for $n=k$, i.e.

$$
d\left(x_{1}, x_{k}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{k-1}, x_{k}\right)
$$

Adding $d\left(x_{k}, x_{k+1}\right)$ on both sides, we get
$d\left(x_{1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{k-1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right)$
By the triangle inequality

$$
d\left(x_{1}, x_{k+1}\right) \leq d\left(x_{1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right)
$$

and hence

$$
d\left(x_{1}, x_{k+1}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{k-1}, x_{k}\right)+d\left(x_{k}, x_{k+1}\right)
$$

This shows that the statement holds for $n=k+1$ and concludes the induction argument.

Problem 2. a) For $0 \leq x<1, x^{n} \rightarrow 0$ as $n \rightarrow \infty$, and hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1-x}{1+x^{n}}=\frac{1-x}{1+0}=1-x
$$

for such x. For $x>1, x^{n} \rightarrow \infty$ as $n \rightarrow \infty$, and hence

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1-x}{1+x^{n}}=0
$$

for such x. Finally, for $x=1, f_{n}(x)=0$ for all n and hence $\lim _{n \rightarrow \infty} f_{n}(x)=$ $0=1-x$ also in this case.
b) Each f_{n} is differentiable at $x=1$ as we can use the quotient rule to compute the derivative. The limit function is not differentiable at $x=1$ as

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{1-x-0}{x-1}=-1
$$

while

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{0-0}{x-1}=0
$$

and hence the two-sided limit $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ does not exist.
c) For $x \in[0,1]$, we have

$$
\left|f(x)-f_{n}(x)\right|=\left|(1-x)-\frac{1-x}{1+x^{n}}\right|=(1-x)\left|1-\frac{1}{1+x^{n}}\right|=
$$

$$
=(1-x)\left|\frac{1+x^{n}}{1+x^{n}}-\frac{1}{1+x^{n}}\right|=(1-x) \frac{x^{n}}{1+x^{n}} \leq(1-x) x^{n}
$$

where we in the last step have used that $1+x^{n} \geq 1$.
Here are two different proofs of uniform continuity:
Alternative I: Assume that $\epsilon>0$ is given and choose $N \in \mathbb{N}$ so large that $(1-\epsilon)^{N}<\epsilon$. For $n \geq N$, we then have

$$
\left|f(x)-f_{n}(x)\right| \leq(1-x) x^{n}< \begin{cases}(1-x)(1-\epsilon)^{n}<\epsilon & \text { when } 0 \leq x<1-\epsilon \\ \epsilon x^{n} \leq \epsilon & \text { when } 1-\epsilon \leq x \leq 1\end{cases}
$$

This shows that $\left\{f_{n}\right\}$ converges uniformly to f on $[0,1]$.
Alternative II: Another way to prove uniform convergence, is to show that

$$
\sup \left\{\left|f(x)-f_{n}(x)\right|: x \in[0,1]\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Since $\left|f(x)-f_{n}(x)\right| \leq(1-x) x^{n}$, it suffices to show that

$$
\sup \left\{(1-x) x^{n}: x \in[0,1]\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The last supremum we can find by differentiating $g_{n}(x)=(1-x) x^{n}=x^{n}-x^{n+1}$. We get $g_{n}^{\prime}(x)=n x^{n-1}-(n+1) x^{n}$, and it's easy to use this to check that the maximum of g_{n} is at $x=\frac{n}{n+1}$, and that the maximum value is $g_{n}\left(\frac{n}{n+1}\right)=$ $\left(1-\frac{n}{n+1}\right)\left(\frac{n}{n+1}\right)^{n}=\frac{1}{n+1}\left(\frac{n}{n+1}\right)^{n}<\frac{1}{n+1}$. Hence

$$
\sup \left\{\left|f(x)-f_{n}(x)\right|: x \in[0,1]\right\} \leq \sup \left\{(1-x) x^{n}: x \in[0,1]\right\} \leq \frac{1}{n+1} \rightarrow 0
$$

as $n \rightarrow \infty$. This proves uniform convergence.
Problem 3. a) The idea is to keep the track and change the parametrization. Note that the function

$$
u(t)=a+\frac{b-a}{d-c}(t-c)
$$

maps the interval $[c, d]$ continuously onto $[a, b]$ (the graph of u is just the straight line through the points (c, a) and (d, b).) Hence

$$
\hat{r}(t)=r(u(t)), \quad t \in[c, d],
$$

is a continuous path that runs through exactly the same values as

$$
r(t), \quad t \in[a, b],
$$

and the two paths connect the same points. (Note that \hat{r} is continuous as it is the composition of the two continuous functions r and u.)
b) We have to check the three properties of an equivalence relation:
(i) Reflexivity: We have $x \sim x$ since the path that stands still at x connects x to x (i.e. the path $r(t)=x$ for all $x \in[a, b]$).
(ii) Symmetry: Assume that $r:[a, b] \rightarrow X$ is a path connecting x to y. Then $\tilde{r}(s)=r(b+a-s)), s \in[a, b]$, is a path connecting y to $x(\tilde{r}$ is just r run backwards). Hence $x \sim y$ implies $y \sim x$.
(iii) Transitivity: Assume $x \sim y$ and $y \sim z$. Then there are paths r_{1} and r_{2} connecting x to y and y to z, respectively. By a) we may choose the parametrizations such that $r_{1}:[0,1] \rightarrow X$ and $r_{2}:[1,2] \rightarrow X$, and hence $r:[0,2] \rightarrow X$ defined by

$$
r(t)= \begin{cases}r_{1}(t) & \text { if } t \in[0,1] \\ r_{2}(t) & \text { if } t \in[1,2]\end{cases}
$$

is a path connecting x to z, i.e. $x \sim z$ (note that r is continuous at 1 since $r_{1}(1)=r_{2}(1)$ and r_{1} and r_{2} are continuous).
c) Assume that P is a component and $x, y \in P$. We must show that there is a path from x to y that lies entirely in P. Since x and y belong to the same component $P, x \sim y$ and hence there is a path $r:[a, b] \rightarrow X$ in X that connects x to y. Any point z on this path is connected to x by a part of the path, and hence $z \in P$. (More precisely: Since z is on the path, $z=r(c)$ for some $c \in[a, b]$, and hence $r:[a, c] \rightarrow X$ is a path connecting x to $z)$. This shows that the path r lies entirely in P, and hence P is path-connected.
d) Pick $x \in C$ and let $[x]$ be the component of x. If y is in C, there is a path in C connecting x to y (here we are using that C is path-connected), and consequently $y \in[x]$. Hence C is a subset of the component $[x]$.
e) Let $u, v \in f(C)$, then there exist points $x, y \in C$ such that $f(x)=u$ and $f(y)=v$. Since C is path-connected, there is a path r in C connecting x and y, and $\hat{r}(t)=f(r(t))$ is a path in $f(C)$ connecting u and v (Note that \hat{r} is continuous as it is the composition of the two continuous functions f and r.)
f) Assume for contradiction that $\{x, y\}$ is path-connected. There must then be a path r in $\{x, y\}$ connecting x to y. Let $s=\inf \{t: r(t)=y\}$. Since r is a path in $\{x, y\}, r(s)$ is either x or y.

Assume first that $r(s)=y$. Then $s \neq 0$ (since $r(0)=x)$ and $x(t)=x$ for all $t<s$. If $\left\{t_{n}\right\}$ is a sequence increasing to t, we get $y=r(s)=\lim _{n \rightarrow \infty} r\left(t_{n}\right)=$ $\lim _{n \rightarrow \infty} x=x$ by continuity of r. This is a contradiction.

Assume next that $r(s)=x$. Then $s \neq 1$ (since $r(1)=y)$, and by definition of s there must for each $n \in \mathbb{N}$ be a point $t_{n}, s \leq t_{n}<s+\frac{1}{n}$, such that $r\left(t_{n}\right)=y$. But then $x=r(s)=\lim _{n \rightarrow \infty} r\left(t_{n}\right)=\lim _{n \rightarrow \infty} y=y$ by continuity of r. This is again a contradiction, and since there are no other alternatives, $\{x, y\}$ cannot be path-connected.
g) Here is the silliest example: Let $X=\{x, y\}, Y=\{u\}$ both have the discrete metric, and let $f: X \rightarrow Y$ be the only function from X to Y. Then $X=f^{-1}(Y)$ is not path-connected according to f) above, but Y obviously is.

To get a slightly less silly version of the same idea, let $X=Y=\mathbb{R}$ and put $f(x)=x^{2}$. Then $D=\{1\}$ is path-connected, but $f^{-1}(D)=\{-1,1\}$ is not according to f).

