
MAT2400: Mandatory Assignment I, Spring 2014:
Solution

Problem 1. We use induction on n. For n = 1 the statement is obvious, and
for n = 2 it is the triangle inequality. Assume that the statement holds for
n = k, i.e.

d(x1, xk) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xk−1, xk)

Adding d(xk, xk+1) on both sides, we get

d(x1, xk) + d(xk, xk+1) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xk−1, xk) + d(xk, xk+1)

By the triangle inequality

d(x1, xk+1) ≤ d(x1, xk) + d(xk, xk+1)

and hence

d(x1, xk+1) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xk−1, xk) + d(xk, xk+1)

This shows that the statement holds for n = k+ 1 and concludes the induction
argument.

Problem 2. a) For 0 ≤ x < 1, xn → 0 as n→∞, and hence

lim
n→∞

fn(x) = lim
n→∞

1− x
1 + xn

=
1− x
1 + 0

= 1− x

for such x. For x > 1, xn →∞ as n→∞, and hence

lim
n→∞

fn(x) = lim
n→∞

1− x
1 + xn

= 0

for such x. Finally, for x = 1, fn(x) = 0 for all n and hence limn→∞ fn(x) =
0 = 1− x also in this case.

b) Each fn is differentiable at x = 1 as we can use the quotient rule to
compute the derivative. The limit function is not differentiable at x = 1 as

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

1− x− 0

x− 1
= −1

while

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1−

0− 0

x− 1
= 0

and hence the two-sided limit limx→1
f(x)−f(1)

x−1 does not exist.

c) For x ∈ [0, 1], we have

|f(x)− fn(x)| = |(1− x)− 1− x
1 + xn

| = (1− x)|1− 1

1 + xn
| =

1



= (1− x)|1 + xn

1 + xn
− 1

1 + xn
| = (1− x)

xn

1 + xn
≤ (1− x)xn

where we in the last step have used that 1 + xn ≥ 1.
Here are two different proofs of uniform continuity:

Alternative I: Assume that ε > 0 is given and choose N ∈ N so large that
(1− ε)N < ε. For n ≥ N , we then have

|f(x)− fn(x)| ≤ (1− x)xn <

 (1− x)(1− ε)n < ε when 0 ≤ x < 1− ε

εxn ≤ ε when 1− ε ≤ x ≤ 1

This shows that {fn} converges uniformly to f on [0, 1].

Alternative II: Another way to prove uniform convergence, is to show that

sup{|f(x)− fn(x)| : x ∈ [0, 1]} → 0 as n→∞

Since |f(x)− fn(x)| ≤ (1− x)xn, it suffices to show that

sup{(1− x)xn : x ∈ [0, 1]} → 0 as n→∞

The last supremum we can find by differentiating gn(x) = (1−x)xn = xn−xn+1.
We get g′n(x) = nxn−1 − (n + 1)xn, and it’s easy to use this to check that the
maximum of gn is at x = n

n+1 , and that the maximum value is gn( n
n+1 ) =

(1− n
n+1 )( n

n+1 )n = 1
n+1 ( n

n+1 )n < 1
n+1 . Hence

sup{|f(x)− fn(x)| : x ∈ [0, 1]} ≤ sup{(1− x)xn : x ∈ [0, 1]} ≤ 1

n+ 1
→ 0

as n→∞. This proves uniform convergence.

Problem 3. a) The idea is to keep the track and change the parametrization.
Note that the function

u(t) = a+
b− a
d− c

(t− c)

maps the interval [c, d] continuously onto [a, b] (the graph of u is just the straight
line through the points (c, a) and (d, b).) Hence

r̂(t) = r(u(t)), t ∈ [c, d],

is a continuous path that runs through exactly the same values as

r(t), t ∈ [a, b],

and the two paths connect the same points. (Note that r̂ is continuous as it is
the composition of the two continuous functions r and u.)

b) We have to check the three properties of an equivalence relation:
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(i) Reflexivity: We have x ∼ x since the path that stands still at x connects
x to x (i.e. the path r(t) = x for all x ∈ [a, b]).

(ii) Symmetry: Assume that r : [a, b]→ X is a path connecting x to y. Then
r̃(s) = r(b+ a− s)), s ∈ [a, b], is a path connecting y to x (r̃ is just r run
backwards). Hence x ∼ y implies y ∼ x.

(iii) Transitivity: Assume x ∼ y and y ∼ z. Then there are paths r1 and
r2 connecting x to y and y to z, respectively. By a) we may choose the
parametrizations such that r1 : [0, 1]→ X and r2 : [1, 2]→ X, and hence
r : [0, 2]→ X defined by

r(t) =

 r1(t) if t ∈ [0, 1]

r2(t) if t ∈ [1, 2]

is a path connecting x to z, i.e. x ∼ z (note that r is continuous at 1 since
r1(1) = r2(1) and r1 and r2 are continuous).

c) Assume that P is a component and x, y ∈ P . We must show that there
is a path from x to y that lies entirely in P . Since x and y belong to the same
component P , x ∼ y and hence there is a path r : [a, b]→ X in X that connects
x to y. Any point z on this path is connected to x by a part of the path, and
hence z ∈ P . (More precisely: Since z is on the path, z = r(c) for some c ∈ [a, b],
and hence r : [a, c]→ X is a path connecting x to z). This shows that the path
r lies entirely in P , and hence P is path-connected.

d) Pick x ∈ C and let [x] be the component of x. If y is in C, there is a
path in C connecting x to y (here we are using that C is path-connected), and
consequently y ∈ [x]. Hence C is a subset of the component [x].

e) Let u, v ∈ f(C), then there exist points x, y ∈ C such that f(x) = u
and f(y) = v. Since C is path-connected, there is a path r in C connecting
x and y, and r̂(t) = f(r(t)) is a path in f(C) connecting u and v (Note that
r̂ is continuous as it is the composition of the two continuous functions f and r.)

f) Assume for contradiction that {x, y} is path-connected. There must then
be a path r in {x, y} connecting x to y. Let s = inf{t : r(t) = y}. Since r is a
path in {x, y}, r(s) is either x or y.

Assume first that r(s) = y. Then s 6= 0 (since r(0) = x) and x(t) = x for all
t < s. If {tn} is a sequence increasing to t, we get y = r(s) = limn→∞ r(tn) =
limn→∞ x = x by continuity of r. This is a contradiction.

Assume next that r(s) = x. Then s 6= 1 (since r(1) = y), and by definition
of s there must for each n ∈ N be a point tn, s ≤ tn < s+ 1

n , such that r(tn) = y.
But then x = r(s) = limn→∞ r(tn) = limn→∞ y = y by continuity of r. This is
again a contradiction, and since there are no other alternatives, {x, y} cannot
be path-connected.
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g) Here is the silliest example: Let X = {x, y}, Y = {u} both have the
discrete metric, and let f : X → Y be the only function from X to Y . Then
X = f−1(Y ) is not path-connected according to f) above, but Y obviously is.

To get a slightly less silly version of the same idea, let X = Y = R and
put f(x) = x2. Then D = {1} is path-connected, but f−1(D) = {−1, 1} is not
according to f).
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