Ark11: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.
Problem 1: There is a disjoint decomposition:

$$
E_{1} \cup E_{2}=\left(E_{1} \backslash E_{1} \cap E_{2}\right) \cup E_{2} .
$$

Hence by additivity of μ we get:

$$
\mu\left(E_{1} \cup E_{2}\right)=\mu\left(E_{1} \backslash E_{1} \cap E_{2}\right)+\mu\left(E_{2}\right)=\mu\left(E_{1}\right)-\mu\left(E_{1} \cap E_{2}\right)+\mu\left(E_{2}\right) .
$$

Problem 2:

a) We have $A \triangle B=A \cup B \backslash A \cap B$ since $A \triangle B$ consists of the points of A and B which are not contained in both sets. Hence $(A \triangle B) \cup(A \cap B)=A \cup B$, and as this is a disjoint decomposition, by additivity, we obtain since $\mu(A \cap B)<\infty$:

$$
\mu(A \triangle B)=\mu(A \cup B)-\mu(A \cap B)
$$

b) Take for example $A=(0, \infty)$ and $B=(a, \infty)$.

Problem 5: Clearly x belongs to infinitly many of the sets E_{n} if and only if x belongs to the sets $\bigcup_{n \geq k} E_{k}$ for all k. Hence

$$
A=\left\{x: x \text { belongs to infintly many } E_{n}\right\}=\bigcap_{k=1}^{\infty} \bigcup_{n \geq k} E_{n} .
$$

As the sets in the intersection form a descending sequence, we have where we also use subadditivity:

$$
\mu A=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{n \geq k} E_{n}\right) \leq \lim _{k \rightarrow \infty} \sum_{n \geq k} \mu E_{n}=0 .
$$

The last equality follows, since $\sum_{n=1}^{\infty} \mu E_{n}<\infty$.
Problem 6: If $[0,1]$ were countable, it would be of measure zero, as this is true for all countable set. It is obviously not the case, as $\mu([0,1])=1$.

Problem 9:

a) The subset E^{c} is dense if and only if it has a nonempty intersection with every open nonempty set. But this is equivalent to no nonempty open set being contained in E.
b) Recall that the Cantor set is the intersection $\bigcap_{n \geq 1} C_{n}$. For the definition of the sets C_{n} see exercise 8.

As any open set in \mathbb{R} is a union of open intervals, it suffuces to show that the Cantor set does not contain any open interval. Assume that I is an open interval in $[0,1]$ and let a be its length. If n is such that $3^{-n}<a$, then I is not contained in any interval of length 3^{-n}. In particular it is not contained in C_{n}, since C_{n} is the union of such intervals.

Problem 10:
a) As $X=U \cup V$ and $U \cap V=\emptyset$, we have $U=V^{c}$ and $V=U^{c}$. This shows that both U and V are closed, since complements of open sets are closed.
b) We refere to problem 8 for notation about the Cantor set.

Assume that $x, y \in \mathcal{C}$ are two distinct points, and assume that $x<y$. Let a be the distance between them, and let n be such that $3^{-n}<a$. Then x, y can not both be contained in the same interval of length 3^{-n}. Hence they lie in different subintervals of C_{n}, and there is a $z \notin C_{n}$ with $x<z<y$. Then $U=\mathcal{C} \cap(-1, z)$ and $V=\mathcal{C} \cap(z, 2)$ are two disjoint (obviously) open subsets (since open subsets of \mathbb{R} intersect \mathcal{C} in open sets) of \mathcal{C} whose union is equal to \mathcal{C} (since $z \notin \mathcal{C}$) and are such that $x \in U$ and $y \in V$.

