Ark12: Exercises for MAT2400 - Measurable and simple functions

The exercises on this sheet cover the sections 5.4 and 5.5. They are intended for the groups on Thursday, May 3 and Friday, May 4.
The distribution is the following: Friday, May 4: No 1, 2, 4, 5, 6, 9, 10.
The rest for Thursday, May 3.
Key words: Measurable functions, characteristic functions, simple functions and two of Littlewoods three principles.

Measurable functions

Problem 1. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be a measurable function.
a) Show that the the sets $f^{-1}(\infty)=\{x: f(x)=\infty\}$ and $f^{-1}(-\infty)=\{x: f(x)=-\infty\}$ are measurable.
b) Show that for any $a \in \overline{\mathbb{R}}$, the level set (sometimes called the fibre of f over a) $f^{-1}(x)=\{x: f(x)=a\}$ is measurable.

Problem 2. Show that a function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}(I)$ is measurable for any interval I.

Problem 3. (Tom's notes 5.4, Problem 9 (page 165)). Let f and g be two measurable functions on \mathbb{R}^{d}. We shall write $f \sim g$ if f and g are equal almost everywhere. Show that this is an equivalence relation. That is:
(i) $f \sim f$
(ii) $f \sim g$ if and only if $g \sim f$
(iii) If $f \sim g$ and $g \sim h$, then $f \sim h$.

Problem 4. Let f and g be two functions on \mathbb{R}^{d}, and assume that $f(x)=g(x)$ almost everywhere. Show that if f is measurable, then g is measurable.
$\underset{\sim}{\text { Problem }} 5$. Let $E \subseteq \mathbb{R}^{d}$ be a measurable set and let $f: E \rightarrow \overline{\mathbb{R}}$ be a function. Let $\tilde{f}: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be the function we obtain by extending f by zero; that is

$$
\tilde{f}(x)= \begin{cases}f(x) & \text { if } x \in E \\ 0 & \text { if not }\end{cases}
$$

Show that $\tilde{f}(x)$ is measurable if and only if $f^{-1}(I)$ is measurable whenever $I=\{x \in$ $\overline{\mathbb{R}}: x<r\}$ for an $r \in \mathbb{R}$.

Problem 6. (Tom's notes 5.4, Problem 6 (page 165)). Let $\left\{E_{n}\right\}$ be a family of pairwise disjoint and measurable subsets of \mathbb{R}^{d}. Assume that $\bigcup_{n=1}^{\infty} E_{n}=\mathbb{R}^{d}$, and let $\left\{f_{n}\right\}$ be a sequence of measurable functions on \mathbb{R}^{d}. Show that the function defined by

$$
f(x)=f_{n}(x) \text { if } x \in E_{n},
$$

is measurable.
Problem 7. (Tom's notes 5.4, Problem 12 (page 165)). A sequence $\left\{f_{n}\right\}$ of measurable functions on \mathbb{R}^{d} is said to converge almost everywhere to f if there is a subset A of \mathbb{R}^{d} of measure zero such that $\left\{f_{n}(x)\right\}$ converges to $f(x)$ for all $x \notin A$. Show that f is measurable.

Simple functions

Problem 8. Let $A \subseteq \mathbb{R}^{d}$ be a set. Recall that the characteristic function or the indicator function of A is given by

$$
\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

a) Assume that A_{1} and A_{2} are two subsets of \mathbb{R}^{d}. Show that $\chi_{A_{1} \cap A_{2}}=\chi_{A_{1}} \chi_{A_{2}}$, that $\chi_{A_{1} \cup A_{2}}=\chi_{A_{1}}+\chi_{A_{2}}-\chi_{A_{1}} \chi_{A_{2}}$ and that $\chi_{A^{c}}=1-\chi_{A}$.
b) Let $A_{i}, i=1,2,3$, be three subsets of \mathbb{R}^{d}. Make a drawing and show that

$$
\chi_{A_{1} \cup A_{2} \cup A_{3}}=\sum_{1 \leq i \leq 3} \chi_{A_{i}}-\sum_{1 \leq i<j \leq 3} \chi_{A_{i}} \chi_{A_{j}}+\chi_{A_{1}} \chi_{A_{2}} \chi_{A_{3}} .
$$

c) Let A_{1}, \ldots, A_{n} be n subsets of \mathbb{R}^{d}. Show by induction that

$$
\chi_{A_{1} \cup \cdots \cup A_{n}}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n} \chi_{A_{j_{1}}} \cdots \cdots \chi_{A_{j_{k}}} .
$$

This is often called the "inclusion-exclusion principle".
Problem 9. If two simple functions are equal almost everywhere, show that their intergrals are equal.

Problem 10. (Basically Tom's notes 5.4, Problem 5 (page 165)). Let $A \subseteq \mathbb{R}^{d}$ be a subset.
a) Show that the characteristic function χ_{A} of A is measurable if and only if A is measurable.
b) Recall that a simple function $f(x)$ on \mathbb{R}^{d} is a function which can be written as

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n} a_{i} \chi_{A_{i}} \tag{+}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and A_{1}, \ldots, A_{n} are measurable subsets of \mathbb{R}^{d}. Show that simple functions are measurable.
c) Give an example to show that expression for $f(x)$ in + is not unique.

Two of Littlewood's three principles

Problem 11. (Littlewood's first principle). Show that if $E \subseteq \mathbb{R}$ is a measurable set and $\epsilon>0$ is a given number, them there is a finite union of pairwise disjoint open intervals $\bigcup_{k=1}^{n} I_{k}$ such that $\mu\left(E \backslash \bigcup_{k=1}^{n} I_{k}\right)<\epsilon$. Hint: Every open set in \mathbb{R} is a countable union of pairwise disjoint open intervals (Theorem 5.2.9 in Tom's). Then use Proposition 5.3.5 on page 159 in Tom's.

The principle is: "A measurable subset of \mathbb{R} is nearly a finite union of open intervals."

Problem 12. Recall that a step function on \mathbb{R} is a function that may be written as $g=\sum_{k=1}^{n} a_{i} \chi_{I_{k}}$ where a_{1}, \ldots, a_{n} are real numbers, and where the sets I_{k} all are finite intervals (not merely measurable sets as is the case for simple function).
a) Given any simple function $f(x)$ on \mathbb{R} and any $\epsilon>0$, show that there is a step function g such that $|f(x)-g(x)|<\epsilon$ except on a set of measure less than ϵ. That is,

$$
\mu(\{x:|f(x)-g(x)| \geq \epsilon\})<\epsilon
$$

Hint: Treat first the case of a characteristic function. Use problem 11 above.
b) Show that given any step function $g(x)$, we may find a continuous function $h(x)$ such that $|g(x)-h(x)|<\epsilon$ except on a set of measure ϵ; that is:

$$
\mu(\{x:|g(x)-h(x)| \geq \epsilon\})<\epsilon
$$

Hint: Threat first the case of a characteristic function - in that case you should be able to draw $h(x)$.

Problem 13. Let f be a boundet, measurable function defined on \mathbb{R}. Let m and M be constants with $m \leq f(x)<M$ for all $x \in \mathbb{R}$. Show that there is a simple function ϕ such that $|f(x)-\phi(x)|<\epsilon$ for all x.
Hint: Divide $[m, M)$ into n pairwise disjoint intervals $I_{k}=\left[a_{k}, b_{k}\right)$ each of length less than ϵ. Let $E_{k}=\left\{x: f(x) \in I_{k}\right\}$, and let ϕ be a suitable linear combination of the characteristic functions $\chi_{E_{k}}$.

Problem 14. (Littlewood's second principle). Show that for any measurable function f on an interval $[a, b]$ which is finite almost everywhere and any $\epsilon>0$, there is a continuous function $g(x)$ suh that

$$
\mu(\{x:|f(x)-g(x)| \geq \epsilon\})<\epsilon
$$

The principle is: "A measurable function which is finite a.e. is nearly continuous."

