Ark12: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1:

a) We have $f^{-1}(-\infty)=\bigcap_{n=1}^{\infty}\{x: f(x)<-n\}$ which is measurable since countable intersections of measurable sets are measurable and since, by definition of f being measurable, the sets $\{x: f(x)<r\}$ are measurable for all real r. In a similar way, $f^{-1}(\infty)=\bigcap_{n=1}^{\infty}\{x: f(x) \geq n\}$, and the sets $\{x: f(x) \geq n\}$ are all measurable since they are the complements of the sets $\{x: f(x)<n\}$, and complements of measurable sets are measurable.
b) We just remark that the fibre $f^{-1}(a)$ is given by

$$
f^{-1}(a)=\{x: x \geq a\} \cap \bigcap_{n=1}^{\infty}\left\{x: f(x)<a+\frac{1}{n}\right\}
$$

where all the sets appearing are measurable since f is measurable.
Problem 2: We first treat the case $I=(-\infty, r]$, and write

$$
f^{-1}(I)=\{x: f(x) \leq r\}=\bigcap_{n=1}^{\infty}\left\{x: f(x)<r+\frac{1}{n}\right\} .
$$

This shows that $f^{-1}(I)$ is measurable, countable intersections of measurables are measurable. Similarily, if $I=(r, \infty)$, we conclude by the equality

$$
f^{-1}(I)=\{x: f(x)>r\}=\bigcap_{n=1}^{\infty}\left\{x: f(x) \geq r+\frac{1}{n}\right\}
$$

where the sets are measurable as the complements of the measurable sets $\{x: f(x)<$ $\left.r+\frac{1}{n}\right\}$. We now know that inverse images of infinite intervals by a measurable function are measurable.

Finally, if I is a finite interval, we may write $f^{-1}(I)$ as the intersection of inverse images of infinite intervals. For example, if $I=[a, b)$, we have

$$
f^{-1}([a, b))=f^{-1}((-\infty, b)) \cap f^{-1}([a, \infty))
$$

Problem 4: Let $E=\{x: f(x) \neq g(x)\}$. By hypo this set is of measure zero, hence any subset of E is measurable. Let r be a real number. We have

$$
\{x: g(x)<r\}=\left(E^{c} \cap\{x: f(x)<r\}\right) \cup(E \cap\{x: g(x)<r\}),
$$

where all involved sets are measuarble, E^{c} since E is measurable, $\{x: f(x)<r\}$ since f is measurable and $E \cap\{x: g(x)<r\}$ since it is a subset of the zero-measure-set E. We conclude that the set $\{x: g(x)<r\}$, being expressed by intersections and unions of measurabel sets, is measurable.

Problem 5: Let r be a real number. If $r>0$ we have

$$
\{x: \tilde{f}(x)<r\}=\{x \in E: f(x)<r\} \cup E^{c},
$$

where the two sets both are measurable. If $r \leq 0$, then

$$
\{x: \tilde{f}(x)<r\}=\{x: f(x)<r\}
$$

which by hypo is measurable.
Problem 6: Let r be a real number. We find

$$
\begin{aligned}
\{x: f(x)<r\} & =\bigcup_{n=1}^{\infty}\left\{x \in E_{n}: f(x)<r\right\}= \\
& =\bigcup_{n=1}^{\infty}\left\{x \in E_{n}: f_{n}(x)<r\right\}=\bigcup_{n=1}^{\infty} E_{n} \cap\left\{x: f_{n}(x)<r\right\}
\end{aligned}
$$

Problem 9: It will be sufficient to show that the intergral of a simple function f which is zero almost everywhere, is zero (Apply that result to the difference of the two functions in the problem). Let $f=\sum_{n=1}^{m} a_{n} \chi_{E_{n}}$ be the standard form of f where all $a_{n} \neq 0$. By hypo, each $\mu\left(E_{n}\right)=0$, and therefore

$$
\int f d \mu=\sum_{n=1}^{m} a_{n} \mu\left(E_{n}\right)=0 .
$$

Problem 10:

a) Assume that A is measurable and let r be a real number. Then $\left\{x: \chi_{A}(x)<r\right\}=A^{c}$ when $r<1$ and $\left\{x: \chi_{A}(x)<r\right\}=\mathbb{R}^{d}$ when $r \geq 1$. In both cases it is measurable.

Assume that χ_{A} is measurable. We have $A=\left\{x: \chi_{A}(x) \geq 1\right\}$ which we know is measurable by problem 1 .
b) Each of the functions $a_{i} \chi_{A_{i}}$ is measurable by a) and the fact the a constant times a measurabel function is measurable. We also know that sums of measurable functions are measurable. And that does it.
c) Let $E_{1}=(0,1)$ and $E_{2}=(0,2)$ and $f=\chi_{E_{1}}+\chi_{E_{2}}$. Then we also have

$$
f=2 \chi_{E_{1}}+\chi_{E_{3}}
$$

where $E_{3}=[1,2)$.

