
Ark1: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only
treated the ones given for the friday sessions, and it has been done rather hastly, so
forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1: In all the three cases it is not too difficult to see that the two first axioms
— positivity and symmetry — are satisfied. We check the triangle inequality:

The Manhattan metric, dMN : We use the good old triangle inequality:

dMN(x, y) =
�

i

|xi − yi| =
�

i

|xi − zi + zi − yi| ≤
�

i

|xi − zi| +
�

i

|zi − yi| =

= dMH(x, z) + dMN(z, y).

The sup-norm metric:

d(x, y) = sup{|xi − yi| : 1 ≤ i ≤ n} = sup{|xi − zi + zi − yi| : 1 ≤ i ≤ n}
≤ sup{|xi − zi| + |zi − yi| : 1 ≤ i ≤ n}
≤ sup{|xi − zi| : 1 ≤ i ≤ n} + sup{|zi − yi| : 1 ≤ i ≤ n}
= d(x, z) + d(z, y).

The Hamming metric: Let a1, . . . , an and b1, . . . , bn and c1, . . . , cn be three secret mes-
sages. Recall that the Hamming distance between two messages is the number of places
where the two differ. We want to show that

d(a, b) ≤ d(a, c) + d(c, b). (�)

Only places where a and c differ contributes to the left side of (�), so we solely have
to show that such a place also contributes to the right side. But ci can not be equal
to both ai and bi when those two are different. Hence there is a contribution either to
d(a, c) or d(c, b) (or to both).

�

Problem 2: This is done in Tome’s notes: Proposition 2.1.2 on page 23. �

Problem 3: This is basically the same argument as in the part of problem 1 about
the sup-norm metric: We get it by taking sup of the inequality

|f(x)− g(x)| ≤ |f(x)− h(x)| + |h(x)− g(x)| ≤ d(f, h) + d(h, g).
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�

Problem 6:

a) z must lie between x and y.

b) The point z must lie on the line segment connecting x and y.

c) The point z must lie in the block having x and y as corners.

�

Problem 8:

a) In this case the triangel inequality follows from the old one:

|f(x)− f(y)| ≤ |f(x)− f(z)| + |f(z)− f(y)|,

and this is true for all functions f . Symmetry is obvious. To get positivity, or more
precisely that d(x, y) = 0 only for x = y, we must have that f(x) = f(y) implies x = y;
that is, f is injective.

b) The function 1
x

is injective; use a). �

Problem : Assume there is a positiv constant M such that d1(x, y) ≤Md2(x, y) for
all points x, y ∈ X.

Let {xn} be a sequence converging to x in the metric d2. We shall show that {xn}
also converges to x with respect to d1. Let � > 0 be given. There exists an N such that
d2(xn, x) < �/M when n > N . Then d1(xn, x) < Md2(xn, x) < M�/M = � whenever
n > N . Hence {xn} converges to x also in the d1 metric. The converse follows by
switching the roles of d1 and d2.

�

Problem 11: Let X be a finite set with two metrics d1 and d2. Let M = sup{d1(x, y)/d2(x, y) :
x, y ∈ X and x �= y}. This is finite since we take the supremum of a finite set. Clearly
d1(x, y) ≤ Md2(x, y) for all x, y ∈ X. Switching the roles of the two metrics, we see
that they are equivalent. �

Problem I: n the Manhattan metric, the ball is the square with corners (±1, 0) and
(0,±1).

In the sup-norm metric, the ball is the square with corners (±1,±1).

In the standard metric on R2, it is the circle with centre in the origin and radius
one. �
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Problem 14: It will be enough to show that if d2(x, y) ≤Md1(x, y), then every open
set in the d2 metric is open in d1. ( By switching roles of the metrics we see that the two
metrics have the same open sets. Closed sets being the complements of open ones, it
follows that they also have the same closed sets.) So let U be open in d2, and let x ∈ U .
By definition there is then a ball Bd2(x; r)⊆U . But Bd1(x; r/M)⊆Bd2(x; r)⊆U , so
every point in U has a d1-ball round it contained in U ; hence U is open in d1-metric.

�

Problem 15: Let us show that the complememnt Xc = X \ {x} is open. Let y ∈ Xc,
i.e., y �= x, and let r = d(x, y)/2. Then the ball B = Bd(y; r) does not contain x, hence
B⊆Xc. This shows that Xc is open, and therefore X is closed. A finite union of closed
sets is closed, so any finite set is closed; in particular if it has two elements. �

Problem 16:

a) A is closed if t = −1; neither closed nor open in the two other cases.

b) The interior points of A is the set {(x, y) ∈ R2 : y2 < x and x > t}
The exterior points of A is the set {(x, y) ∈ R2 : y2 > x or x < t}
If t ≥ 0, the boundary is the set

{(x, y) ∈ R2 : y2 = x and t > x} ∪ {(x, y) ∈ R2 : x = t and y2 ≤ x}.

If t < 0, then the boundary is the parabola {(x, y) ∈ R2 : y2 = x}.
c) In all three caes the closure of A can be described as the set {(x, y) ∈ R2 : y2 ≤
x and x ≥ t} �

Problem 19: Let U = {f(x) :
�

b

a
f(x) dx > 1}, and let f ∈ U . Let A =

�
b

a
f(x) dx

and let r = (A− 1)/2. Then if g(x) ∈ B(f ; r), we have
�

b

a
(g(x)− f(x)) > −r, and thus

�
b

a

g(x) dx =

�
b

a

(g(x)− f(x)) dx +

�
b

a

f(x) dx ≥ A− r = 1 + A/2 > 1.

Hence the ball B(f ; r)⊆U , and U is open. �

Problem 23:

a) One easily checks that for real numbers d and r with r < 1, there is an equivalence

d

1 + d
< r ⇔ d <

r

1− r
.
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This shows that Be(a; r) = Bd(a; r

1−r
) for 0 < r < 1.

b) Take for example X = R and the usual Euclidian metric d(x, y) = |x − y|. The
metric d is not bounded, i.e., we can make d(x, y) as big as we want by chosing x and
y far apart. However e(x, y) is always less than one. This shows that two metrics can
not be equivalent ( there is no number M such that d(x, y) ≤ Me(x, y) for all x and
y). �
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