Ark2: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1:

a) The sequence $\{n\}$ is Cauchy in the metric d : We compute:

$$
\left|\frac{1}{a_{n}}-\frac{1}{a_{n+k}}\right|=\left|\frac{1}{n}-\frac{1}{n+k}\right|=\frac{k}{n(n+k)}=\frac{1}{n(1+n / k)}<\frac{1}{n}
$$

Given $\epsilon>0$; if $n>1 / \epsilon$, then $d\left(a_{n}, a_{n+k}\right)<\epsilon$ for all $k \in \mathbb{N}$.
It is not convergent: Suppose it were, and let $a \in \mathbb{R}^{+}$be the limit. We compute:

$$
d(n, a)=\left|\frac{1}{n}-\frac{1}{a}\right|=\frac{|a-n|}{n a}=\frac{|a / n-1|}{a}>\frac{2}{a}
$$

for n big, i.e., for $n>2 a$.
b) No, $\left\{\frac{1}{n}\right\}$ is not Cauchy: We have $d\left(\frac{1}{n}, \frac{1}{n+k}\right)=|n-(n+k)|=k$, which can be made bigger than most ϵ-s.
c) Assume that $\left\{a_{n}\right\}$ converges to $a \in \mathbb{R}^{+}$in the standard metric. We compute:

$$
\begin{equation*}
d\left(a_{n}, a\right)=\left|\frac{1}{a_{n}}-\frac{1}{a}\right|=\frac{\left|a-a_{n}\right|}{a a_{n}} . \tag{8}
\end{equation*}
$$

Now, let $\epsilon>0$ be given. Since $a>0$, the inequality $\left|a-a_{n}\right|<a / 2$ holds true for n sufficently big. Hence $a_{n}>a / 2$. For n perhaps even bigger, $\left|a-a_{n}\right|<\left(a^{2} / 2\right) \epsilon$. From this we obtain using $(\%)$:

$$
d\left(a_{n}, a\right)<\frac{\left|a-a_{n}\right|}{a a_{n}}<\frac{\left(a^{2} / 2\right) \epsilon}{a(a / 2)}=\epsilon .
$$

We have shown that $\left\{a_{n}\right\}$ converges to a in the metric d.
The other way around: Assume that $\left\{a_{n}\right\}$ converges to $a \in \mathbb{R}$ in the metric d. Then for n sufficiently big the following is true $\left|\frac{1}{a_{n}}-\frac{1}{a}\right|<\frac{1}{2 a}$, from which it follows that $a_{n}<2 a$. By ($\%$) we then get:

$$
\begin{equation*}
\left|a-a_{n}\right|=a a_{n}\left|\frac{1}{a_{n}}-\frac{1}{a}\right|=a a_{n} d\left(a_{n}, a\right)<2 a^{2} d\left(a_{n}, a\right) . \tag{+}
\end{equation*}
$$

So, if $\epsilon>0$ is given, we may, since $\left\{a_{n}\right\}$ converges in the metric d, find an N such that for $n>N$ we have $d\left(a_{n}, a\right)<\epsilon / 2 a^{2}$. But then $\left|a-a_{n}\right|<\epsilon$ by (+). Hence $\left\{a_{n}\right\}$ converges to a in the usual metric.

Problem 5: Let $I \subseteq[0,2 \pi]$ be an open interval. If $\pi / 2 \in I$ and $3 \pi / 2 \in I$, then $f(I)=[-1,1]$ (by the intermediat value theorem and the facts that $\sin \pi / 2=1$ and $\sin 3 \pi / 2=-1$.) Assume that $\pi / 2 \notin I$. Then $\sin x$ has no critical point ${ }^{1}$ in I, hence has no maximal value in I (I is open). Therefore $f(I)$ is not closed (it has no "top point").

If $3 \pi / 2 \notin I$, an analoguous agument, with maximum replaced by minimum, shows that $f(I)$ is not closed (having no "bottom point"). So, the conclusion is that $f(I)$ is closed if and only if both $\pi / 2$ and $3 \pi / 2$ are in I.
$f(I)$ is open if and only if f does neither have a maximum point nor a minimum point in I, which means that $I \subseteq(\pi / 2,3 \pi / 2)$.

Problem 6:

a) We have for two functions $f, g \in C([0,1])$:

$$
\left|E_{a}(f)-E_{a}(g)\right|=|f(a)-g(a)| \leq \sup \{|f(x)-g(x)|: x \in[0,1]\}=\rho(f, g),
$$

where, as usual, ρ denotes the sup-norm metric. Then it is clear that E_{a} is continuous: You may take $\delta=\epsilon$.
b) No, E_{a} is not continuous in the integral metric. Any sequence of functions $\left\{f_{n}\right\}$ with $f_{n}(a)=1$, but with the area betsween the graph of f_{n} and the x-axis tending to zero when n tends to infinity, will give an example: Then $1=E_{a}(f) \neq E_{a}(0)=0$, but we can find elements from the sequence arbitrarly near 0 in the integral metric. If you want an explicit example, the following sequence of functions will do (make a drawing and compute the areas):

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq x \leq \frac{1}{2}-\frac{1}{n} \\
n\left(x-\left(\frac{1}{2}-\frac{1}{n}\right)\right) & \text { if } & \frac{1}{2}-\frac{1}{n}<x \leq \frac{1}{2} \\
-n\left(x-\left(\frac{1}{2}+\frac{1}{n}\right)\right) & \text { if } & \frac{1}{2}<x \leq \frac{1}{2}+\frac{1}{n} \\
0 & \text { if } & \frac{1}{2}+\frac{1}{n} \leq x \leq 1
\end{array}\right.
$$

Problem 9: Clearly $f_{n}(x)=\frac{1}{n} \sin n x$ tends to zero in the sup-norm metric, indeed $\left|\frac{1}{n} \sin n x\right|<\frac{1}{n}$. We have $f_{n}^{\prime}(x)=\cos n x$, and this sequence does not tend uniformly to

[^0]zero (not even pointwise), since for any $n, \cos (n \cdot 0)=\cos 0=1$. Thus the map D is not continuous at 0 .

Problem 11:

a) The set $\{(x, y): x \geq 0, y \geq 0\}$ is complete, being closed in the complete space \mathbb{R}^{2}.
b) The set $A=\left\{(x, y): x^{2}+y^{2}>0\right\}$ is not complete; any sequence in \mathbb{R}^{2} converging to the origin is a Cauchy in sequence A not converging in A.
c) The set $B=\mathbb{R}^{2} \backslash \mathbb{Q} \times \mathbb{Q}$ is not complete. For example is the sequence $\left(\frac{\sqrt{2}}{n}, \frac{\sqrt{2}}{n}\right)$ a Cauchy sequence from B (since $\sqrt{2}$ is not rational) which does not converge in B (since $(0,0) \notin B)$.

Problem 12: NB: New version of this exercise.
If $\left\{x_{n}\right\}$ is a Cauchy sequence from $A \cap B$, it converges to an element belonging both to A and B both being complete.

Assume that $\left\{a_{n}\right\}$ is a Cauchy sequence from the union $A \cup B$. Let $\left\{a_{n_{i}}\right\}$ be the subsequence of $\left\{a_{n}\right\}$ whose terms are the terms of $\left\{a_{n}\right\}$ belonging to A, and let $\left\{a_{m_{i}}\right\}$ be the one of all the terms in $\left\{a_{n}\right\}$ being elements in B.

Now, the sequence $\left\{a_{n_{i}}\right\}$ is Cauchy, being a subsequence of a Cauchy sequence, hence it converges to $a \in A$ since A is complete. In a similar way $\left\{a_{m_{i}}\right\}$ converges to an element b in B since B is complete.

As $d\left(a_{n_{i}}, a_{m_{i}}\right)$ tends to zero when i tends to infinity, $d(a, b)=0$, and therefore $a=b$. Hence $\left\{a_{n}\right\}$ converges to a (which is equal to b), and $A \cup B$ is complete.

Problem 15:

a) Each of the conditions $0 \leq x_{i}$ defines a closed set (they define sets being inverse images of closed intervals by continuous maps). Likewise, the condition $\sum_{i=1}^{n} x_{i}=1$ also defines a closed set. The intersection of closed sets being closed, it follows that Δ_{n} is closed. It is also bounded since for each j :

$$
0 \leq x_{j} \leq \sum_{i=1}^{n} x_{i}=1
$$

Hence Δ_{n} is compact since closed and bounded sets in \mathbb{R}^{n} are compact (by the HeineBorel theorem).
b) In this case, the set is not compact. It is not bounded, since x_{5} can be as big as we want.

Problem 23: We have:

$$
|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|(x-y)||(x+y)| \leq \frac{2}{3}|x-y|
$$

since both $|x|$ and $|y|$ are less than $1 / 3$. Hence f is a contraction. The fixed point satisfies the second degree equation

$$
x=x^{2}+1 / 9
$$

which has the solution $\frac{3-\sqrt{5}}{6}$ in $[-1 / 3,1 / 3]$.
Problem 24:
a) We find:

$$
\left|F(x, y)-F\left(x^{\prime}, y^{\prime}\right)\right|=\left|\left(\frac{1}{3}\left(x-x^{\prime}\right), \frac{1}{5}\left(y-y^{\prime}\right)\right)\right| \leq \frac{1}{3}\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|
$$

where $|v|$ denotes the usual length of a vector.
b) The fixed point satisfies the equation: $(x, y)=\left(\frac{1}{3} x+1, \frac{1}{5} y+1\right)$ which has the solution $x=\frac{3}{2}$ and $y=\frac{5}{4}$.

[^0]: ${ }^{1}$ Recall that a critical point is a point where the derivativ vanishes

