Ark3: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.
Problem 1: Given $\epsilon>0$. Assume that there is a $\delta<0$ such that $\left|x^{2}-y^{2}\right|<\epsilon$ whenever $|x-y|<\delta$. For any $x>0$ we let $y=x-\delta$. Then $|x-y|=\delta$ and $x^{2}-y^{y}=$ $|x+y||x-y|=(2 x+\delta) \delta>2 x \delta$ which we can make as big as we want, e.g., bigger than ϵ, by choosing x big; e.g., $x>\epsilon / 2 \delta$.

Problem 2: Given $\epsilon>0$. Assume that there is a $\delta<0$ such that $\left|\frac{1}{x}-\frac{1}{y}\right|<\epsilon$ whenever $|x-y|<\delta$. For any $x>0$ we let $y=x-\delta$. Then $|x-y|=\delta$ and

$$
\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|y-x|}{x y}=\frac{\delta}{x|x-\delta|}>\frac{\delta}{x^{2}}
$$

which we can make as big as we want, e.g., bigger than ϵ, by choosing x small; e.g., $x<\sqrt{\frac{\delta}{\epsilon}}$.

Problem 7:

a) Clearly $\lim _{n \rightarrow \infty} x / n=0$ for any x. The limit is not uniform, since if $\epsilon<0$ and N are given, $|x| / N>\epsilon$ if $|x|>\epsilon / N$.
b) On the closed interval $[a, b]$ the limit is uniform. If $\epsilon>0$ is given then $|x| / n<\epsilon$ if $n>\max \{|a|,|b|\} / \epsilon$.

Problem 8: If $0<x<1$ then $\lim _{n \rightarrow \infty} x^{n}=0$ so x^{n} converges pointwise to zero. The convergence is not uniform, since if $\epsilon>0$ is given, the inequality $x^{n}<\epsilon$ is equivalent to $n>\log \epsilon / \log x$ (remember that the log's are negative,) but as x tends to 1 we know that $\log x$ tends to zero. This means that for any n, we have $x^{n}>\epsilon$ for x close to 1 .

Problem 11: We have to find $\sup \left\{\left|x-x^{2}\right|: x \in[0,1]\right\}$. Let $f(x)=x-x^{2}$; it's derivative is $f^{\prime}(x)=1-2 x$ which has a zero at $x=1 / 2$ which is a max. This gives that the max-value of f is $1 / 4$. Hence $\rho(f, g)=1 / 4$.

Problem 13: We have to find the max value of $|\sin x-\cos x|$ on $[0,2 \pi]$. Let $f(x)=$ $\sin x-\cos x$. We find $f^{\prime}(x)=\cos x+\sin x$ which is zero when $\tan x=-1$, i.e.,
$x=3 \pi / 4$ or $7 \pi / 4$. In both cases $|\sin x-\cos x|=\sqrt{2}$, which is bigger than the value at the endpoints (which is 1). Hence $\rho(f, g)=\sqrt{2}$.

We still get the same result in $[\pi, 2 \pi]$ since one of stationary points is contained there.

