Ark4: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1: The differential equation is separable:

$$
\frac{y^{\prime}}{1+y^{2}}=1,
$$

and it gives $\arctan y=x+C$ by integration; hence $y=\tan (x+C)$. If $\tan (0+C)=0$, then $C=0$ and the solution is equal to $\tan x$; a solution which is valid on $(-\pi, \pi)$. As the solution tends to ∞ at π it can not be extended beyond π.
$1+y^{2}$ is not uniformly Lipschitz since

$$
1+y^{2}-\left(1+z^{2}\right)=y^{2}-z^{2}=(y-z)(y+z)
$$

and if $\epsilon>0$ and $\delta>0$ are given, we can by setting $z=y+\delta$ and choosing $y>\epsilon / 2 \delta$, get

$$
\left|1+y^{2}-\left(1+z^{2}\right)\right|=|(y-z)(y+z)|=\delta(2 y+\delta) \geq \delta 2 y \geq \epsilon .
$$

Problem 2:

a) We have that $y^{\prime}(t)=\frac{3}{2}(t-a)^{\frac{1}{2}}=\frac{3}{2} y^{\frac{1}{3}}$ if $t>a$. For $t<a$ both y^{\prime} and y are identical zero, and they satisfy obviuously $y^{\prime}=\frac{2}{3} y^{\frac{1}{3}}$.
$y(t)$ is differentiable for $t=a$: The differential quotient from the right is

$$
\frac{(a+h-a)^{\frac{3}{2}}}{h}=\frac{h^{\frac{3}{2}}}{h}=h^{\frac{1}{2}} \rightarrow 0
$$

when $h \rightarrow 0$. Clearly the differential quotient from the left is identically zero, so the to limits are equal, and y is differentiable at $t=0$ with derivative equal 0 ; and this fits in the differential equation.
b) The mean value theprem gives us

$$
y^{\frac{1}{3}}-z^{\frac{1}{3}}=\frac{1}{3} c^{-\frac{2}{3}}(y-z)
$$

where c is some number between y and z. Given any $\epsilon>0$ and $\delta>0$, let $y-z=\delta$, then

$$
y^{\frac{1}{3}}-z^{\frac{1}{3}}=\frac{1}{3} c^{-\frac{2}{3}}(y-z)=\frac{1}{3} c^{-\frac{2}{3}} \delta \geq \frac{1}{3} y^{-\frac{2}{3}} \delta
$$

since $c<y$. Now choose $y>\left(\frac{1}{3} \frac{\delta}{\epsilon}\right)^{\frac{3}{2}}$. That gives $\left|y^{\frac{1}{3}}-z^{\frac{1}{3}}\right|>\epsilon$.

Problem 3:

a) If $\left(b_{i j}\right)=A y$, then $b_{i j}=\sum_{j=1}^{n} a_{i j}(t) y_{j}$. Hence

$$
\left|b_{i j}\right|=\left|\sum_{j=1}^{n} a_{i j}(t) y_{j}\right| \leq \sum_{j=1}^{n}\left|a_{i j}(t)\right|\left|y_{j}\right| \leq M\|y\|,
$$

since $M=\sup \left\{\left|a_{i j}(t)\right|: t \in[a, b]\right.$ and $\left.1 \leq i, j \leq n\right\}$ and $\|y\|=\sup \left\{\left|y_{j}\right|: j=1, \ldots, n\right\}$.
If y and z are two members of \mathbb{R}^{n}, we have by linearity of A and by what we just did:

$$
\|A y-A z\|=\|A(y-z)\| \leq n M\|y-z\|,
$$

so A is uniformly Lipschitz on $[a, b] \times \mathbb{R}^{n}$ with constant $n M$.
b) We checked that $A y$ is uniformly Lipschitz on $[a, b] \times \mathbb{R}^{n}$ so by theorem 3.4.2 from Tom's, we conclude that the initaial value problem

$$
y^{\prime}(t)=A y(t) \quad y(0)=y_{0}
$$

has a unique solution for $t \in[a, b]$.

Problem 4: Since $y(t)=\binom{u(t)}{v(t)}$ we get $y^{\prime}=\binom{u^{\prime}}{v^{\prime}}$ so if y is a solution of the initial value problem

$$
y^{\prime}(t)=f(t, y(t)) \quad y(0)=\binom{a}{b}
$$

we get from the definition of f

$$
f(t, u, v)=\binom{v}{g(t, v, u)}
$$

the following: $v=u^{\prime}$ and $v^{\prime}=g(t, v, u)=g\left(t, u^{\prime}, u\right)$, i.e., $u^{\prime \prime}=g\left(t, u^{\prime}, u\right)$, and that is what we want. The initial condition $y(0)=\binom{a}{b}$ translates into $u(0)=a$ and $u^{\prime}(0)=v(0)=b$.

Problem 5: One way of doing this is to look at points in \mathbb{R}^{n} whose coordinates are of the form $k / 10^{n}$ where $n \in \mathbb{N}$ and $k \in \mathbb{Z}$. They are clearly form a countable set A (i.e., , as subset of the rationals which is countable). Given a point $x \in \mathbb{R}^{n}$, then the decimal expansion of the coordinates of x give a sequence in A converging to x.

Problem 6: Assume that A is dense. Let $x \in X$ and let a_{n} be a sequence from a converging to x. If $r>0$, there is an N such that for $n>N$ then $d\left(x, a_{n}\right)<r$, i.e., $a_{n} \in B(r ; x)$.

The other way around: Let $x \in X$. For every $n \in \mathbb{N}$ there is at least one element from A in $B(r ; a)$. Pick one, and call it a_{n}. Then - almost by definition $-\left\{a_{n}\right\}$ is a sequence from A which converges to x.

Problem 7: Any real number has an expantion as a binary fraction: $x=a_{1} a_{2} \ldots a_{r}, b_{1} b_{2}, \ldots$. where all a_{i} 's and b_{i} 's are 0,1 or 2 . Hence there is a sequence from $A=\left\{k / 2^{n}: n \in\right.$ $\mathbb{N}, k \in \mathbb{Z}\}$.
Or a more formal proof: Fix $x \in \mathbb{R}$. Let $s=\sup \{y \in A: y \leq x\}$. We claim that $s=x$. That will do, since it certainly implies there is a sequence from A converging to x. If $s<x$, let n be such that $2^{-n}<x-s$ and pick and element a from A such that $s-a<2^{-n}$. Then $a+2^{-n} \in A$, but $s<a+2^{-n}<x$, which is a contradiction.

Problem 8:

a) The sequence $\left\{f_{n}(x)\right\}$ is equicontinuous: Indeed, if $\epsilon>0$ is given, we have

$$
d\left(f_{n}(x), f_{n}(y)\right) \leq \sigma_{n} d(x, y)<d(x, y)
$$

where $\sigma_{n}<1$ is the contraction factor of f_{n}. We therefore let $\delta=\epsilon$. This clearly gives $d\left(f_{n}(x), f_{n}(y)\right) \epsilon$ whenever $d(x, y)<\delta$, and hence $\left\{f_{n}(x)\right\}$ is equicontinuous.
The sequence is bounded: Let the diameter of K be denoted by κ, i.e., $\kappa=\sup \{d(x, y)$: $x, y \in K\}$, which is finite since K is compact. Clearly it holds true that $d\left(f_{n}(x), f_{n}(y)\right)<$ κ, and it follows that $\left\{f_{n}(x)\right\}$ is a bounded sequence.

It follows by A\&A - or more precisely by theorem 3.5.5 in Tom's - that our sequence $\left\{f_{n}(x)\right\}$, being bounded and equicontinuous, has a convergent subsequence.
b) By renaming (i.e., replacing the orignal sequence by the uniformly convergent subsequence) we may assume that the sdequence $\left\{f_{n}(x)\right\}$ is uniformly continuous.

Each f_{n} is a contraction and has therefore a fixed point after Banach's Fixed point theorem (K being compact is complete). Let x_{n} be that point. Then sequence $\left\{x_{n}\right\}$ has a convergent subsequence, say $\left\{x_{n_{i}}\right\}$, since K is compact, and we let x be the limit
of that sequence. Then - after lemma 3.5.7 in Tom's - we get

$$
x=\lim _{i \rightarrow \infty} x_{n_{i}}=\lim _{i \rightarrow \infty} f_{n_{i}}\left(x_{n_{i}}\right)=f\left(\lim _{i \rightarrow \infty} x_{n_{i}}\right)=f(x),
$$

and x is a fixed point for f.
c) Obviously $f_{n}(x)=(1-1 / n) x$ is a contraction with factor $\sigma_{n}=(1-1 / n)$. In the limit we get $f(x)=x$, and the convergence is uniform since $\sup \left\{f_{n}(x): x \in[0,1]\right\}=1-1 / n$ is convergent. The limit $f(x)=x$ is not a contraction (the reason being that σ_{n} tends to one).

Problem 9. 9We intend ti use the A\&A theorem, and must check that \mathscr{K} is closed, bounded and equicontinuous:
\mathscr{K} is bounded: By the assumptions we have

$$
|f(x)|=|f(x)-f(0)| \leq K|x| \leq K .
$$

for all $f \in \mathscr{K}$ and all $x \in[-1,1]$.
\mathscr{K} is closed: Let a convergent sequence $f_{n}(x)$ from \mathscr{K} be given, and let $f(x)$ be the limit. As the absolute value is a continuous function, we can let n tend to ∞ in the inequality $\left|f_{n}(x)-f_{n}(y)\right|<K|x-y|$ and get $|f(x)-f(y)|<K|x-y|$. Since the sequence $\left\{f_{n} x\right\}$ converges pointwise, $f(x)=0$. Hence \mathscr{K} is closed.
\mathscr{K} is equicontinuous: Let $\epsilon>$ be a number and put $\delta=\epsilon / K$. Then by the inequality in the problem, we get

$$
|f(x)-f(y)| \leq K|x-y|<K \delta=K \epsilon / K=\epsilon
$$

which is vald for all x, y satisfying $|x-y|<\delta$ and all $f \in \mathscr{K}$.
Problem 10: Any closed ball $\bar{B}(a ; r)$ in \mathbb{R}^{n} is closed and bounded, hence compact by the -Weierstrass theorem.

Let a closed ball B round 0 be given in $C([0,1], \mathbb{R})$, of radius r say. Let $f(x)$ be defined on $[0,1]$ by the usual "tent" construction:

$$
f(x)= \begin{cases}0 & x>\frac{2}{n} \\ -r n\left(x-\frac{2}{n}\right) & \frac{1}{n}<x \leq \frac{2}{n} \\ r n x & 0 \leq x \leq \frac{1}{n}\end{cases}
$$

Then $d\left(f_{n}, 0\right)=\sup \left\{\left|f_{n}(x)\right|: x \in[0,1]\right\}=r$ so each f_{n} belongs to B. Clearly f_{n} converges pointwise to zero, but no subsequence can converge uniformly since $d\left(f_{n}, 0\right)=$ r for all n. hence B is not compact.

Problem 11:

a) The derivative of $\sin n x$ is $n \cos n x$. Hence the mean value theorem gives us a c between x and y such that

$$
\sin n x-\sin n y=n \cos n c(x-y)
$$

b) The family \mathscr{S} is not equicontinuous, since if x and y belong to $[-\pi / 4, \pi / 4]$ (an interval where $\cos x$ exceeds $\sqrt{2} / 2$ and hence $1 / 2)$ and $x-y=\delta$, then

$$
\sin n x-\sin n y \geq \delta n / 2
$$

and if ϵ is given, choosing $n>2 \epsilon / \delta$ for any $\delta>0$ gives us

$$
\sin n x-\sin n y>\epsilon
$$

c) A subfamily of an equicontinuous family obviously being equicontinuous, $C(I, J)$ can not be equicontinuous after what we just did.
d) No, $C([0,1],[0,1])$ for example, has many sequences without convergent subsequences, e.g., the one we constructed in problem 10.

Problem 12: The mean value theorem gives us two numbers c_{1} and c_{2} between t and u such that $\left|f_{i}(t)-f_{i}(u)\right|=\left|f_{i}^{\prime}\left(c_{i}\right)\right||t-u|$ for $i=1,2$. Hence $d_{M H}(f(t), f(u)) \leq$ $M|t-u|$. This shows that the the set of curves with bounded speed connecting A and B is an equicontinuous family: Given $\epsilon>0$, use $\delta=\epsilon / M$.

Again by the mean value theorem, we have $\left|f_{i}(u)-f_{i}(a)\right|<\left|f_{i}^{\prime}\left(c_{i}\right)\right|(b-a)$,for c_{i} 's between a and u, and hence the curves stay within the (Manhattan) circel round A with radius $2 M(b-a)$, and they form a bounded family.

