Ark5: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only treated the ones given for the friday sessions, and it has been done rather hastly, so forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1: We have that

$$
\lim _{n \rightarrow \infty} f_{n}(x)= \begin{cases}0 & \text { if } x \in[0,1) \\ 1 & \text { if } x=1\end{cases}
$$

Hence $f(1)=1$. Now $f_{n}\left(x_{n}\right)=\left(1-\frac{1}{n}\right)^{n}$ which tends to e^{-1}. The sequence $\left\{f_{n}\right\}$ do not converge uniformly to f, hence lemma 3.5.7 does not apply.

Problem 2:

a) Let $\epsilon>0$ be given. We have to produce an $\delta>0$ such that $|f(n)-g(m)|<\epsilon$ once $d(n, m)<\delta$, and this for all $f \in C(X, \mathbb{R})$. But the metric on x is discete which means that $d(n, m)=1$ if $n \neq m$; hence if we choose any δ less than one, $d(n, m)<\delta$ implies that $n=m$, and $|f(n)-f(m)|=0<\epsilon$.
b) As \mathbb{R}^{m} is equipped with the sup-norm metric, $d \mathbb{R}^{m}(f, g)=\sup \{|f(i)-g(i)|: 1 \geq$ $i \leq m\}$ which clearly is equal to $d(f, g)=\sup \{|f(x)-g(x)|: x \in X\}$ since $X=$ $\{1,2,3, \ldots, m\}$.
c) Recall what the Bolzano-Weierstrass theorem says: Every bounded sequence in \mathbb{R}^{m} has a convergent subsequence.

By 2.b) the map F gives a one to one corespondence between sequences in \mathbb{R}^{m} and $C(X, \mathbb{R})$, and because F is an isometry, a sequence in \mathbb{R}^{m} converges if and only if the corresponding sequence in $C(X, \mathbb{R})$ converges. Furthermore, a sequence in \mathbb{R}^{m} is bounded if and only if the same holds for the corresponding sequence in $C(X, \mathbb{R})$.

Now, as the whole space $C(X, \mathbb{R})$ is equicontinuous, any sequence will also be. And hence every bounded sequence has a convergent subsequence by the A\&A - theorem. And this exactly what $\mathrm{B} \& \mathrm{~W}$ say.

Problem 3: First of all, if the function σ is constant its value must be zero since $\sigma(0)=0$, and the functions having $\sigma=0$ as modulus of continuity are all constant. Clearly a family of constant functions is equicontinuous (whatever ϵ is, use any δ you want).

If σ is not constant, the set $\{\sigma(x): x \in[0, \infty)\}$ is an interval containing 0 , but not reduced to $\{0\}$. This since σ is continuous an nonconstant. Hence for any $\epsilon>$ there is
a $\delta>0$ such that $\sigma(\delta)<\epsilon$.
a) Let \mathscr{F} be a family of functions from X to Y all having σ as modulus of continuity. Let $\epsilon>0$ be given and choose δ such that $\sigma(\delta)<\epsilon$. Then if $d_{X}(x, y)<\delta$ we get

$$
d_{X}(f(x), f(y))<\sigma\left(d_{X}(x, y)\right) \leq \sigma(\delta)<\epsilon
$$

since σ is nondecreasing.
b) We want to apply the A\&A theorem. We know that the family \mathscr{K} is equicontinuous, and have only to check that it is closed and bounded.
Boundedness: We have the inequality:

$$
\begin{equation*}
|f(x)|=\left|f(x)-f\left(x_{0}\right)\right| \leq \sigma\left(d_{X}\left(x, x_{0}\right)\right) \tag{*}
\end{equation*}
$$

By assumption σ is continuous, and we know that $d_{X}\left(x, x_{0}\right)$ is a continuous function of x. Hence the composition $\sigma\left(d_{X}\left(x, x_{0}\right)\right)$ is a continuos function of x. Since X is compact, it has maximal value, say M. Then * translate into:

$$
|f(x)|=\left|f(x)-f\left(x_{0}\right)\right| \leq \sigma\left(d_{X}\left(x, x_{0}\right)\right) \leq M .
$$

and we conclude that \mathscr{K} is bounded.
Closedness: Let f_{n} be a sequence in \mathscr{K} converging to f. Clearly $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)=$ 0 . Let $\epsilon>0$ be given and choose N such that $\left|f_{n}(z)-f(z)\right|<\epsilon$ whenever $n \geq N$ and for all $z \in X$; which can be done since f_{n} tends uniformly to f. The we get:

$$
|f(x)-f(y)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|<2 \epsilon+\sigma(d(x, y)) .
$$

This holds for all $\epsilon>0$, and it follows that

$$
|f(x)-f(y)| \leq \sigma(d(x, y)) .
$$

Concequently $f \in \mathscr{K}$, that is, \mathscr{K} is closed.

Problem 4:

a) A polynomial is shaped like $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ where the a_{k} 's are constants. This gives

$$
\int p(x) f(x) d x=\sum_{k=1}^{n} a_{k} \int x^{k} f(x) d x=0
$$

since for each $k, \int x^{k} f(x) d x=0$.
b) Vi have for any polynomial $p(x)$:

$$
\begin{equation*}
\int f(x)(f(x)-p(x)) d x=\int f(x)^{2} d x-\int f(x) p(x) d x=\int f(x)^{2} d x \tag{*}
\end{equation*}
$$

By Weierstrass' approximation theorem we can, for each given $\epsilon>0$, find a polynomial such that $|f(x)-p(x)|<\epsilon$ for all $x \in[a, b]$. Integration gives

$$
\int|f(x)(f(x)-p(x))| d x \leq M(b-a) \epsilon,
$$

where $M=\sup \{|f(x)|: x \in[a, b]\}$. Hence by $* \int f(x)^{2} d x<M(b-a) \epsilon$, but then $\int f(x)^{2} d x=0$ since $\epsilon>0$ can be choosen freely. This implies that $f(x)=0$ since $f(x)^{2}$ is a positive function.

Problem 5:

a) If $f(x)$ is continuously diffentiable, we get by partial integration:

$$
\int_{-\pi}^{\pi} f(x) \cos n x d x=\left.\right|_{-\pi} ^{\pi} f(x) \frac{\sin n x}{n}-\frac{1}{n} \int_{-\pi}^{\pi} f^{\prime}(x) \sin n x d x=-\frac{1}{n} \int_{-\pi}^{\pi} f^{\prime}(x) \sin n x d x
$$

hence

$$
\left|\int_{-\pi}^{\pi} f(x) \cos n x d x\right| \leq\left|\frac{1}{n} \int_{-\pi}^{\pi} f^{\prime}(x) \sin n x d x\right| \leq \frac{2 \pi M}{n}
$$

where $M=\sup \left\{\left|f^{\prime}(x)\right|: x \in[-\pi, \pi]\right\}$ which is finite since f^{\prime} is continuous. Now as $n \rightarrow \infty$, the right side of tends to zero.
b) By Weierstrass approximation theorem we may find, for each $\epsilon>0$ given, a polynomial $p(x)$ shuch that $|f(x)-p(x)|<\epsilon / 2$ for all $x \in[-\pi, \pi]$. Since $p(x)$ is continuously diffentiable, we may by 5.a) finde an N such that for $n>N$ then $\left|\int p(x) \cos n x d x\right|<\epsilon / 2$. This gives

$$
\left|\int_{-\pi}^{\pi} f(x) \cos \right| n x d x \leq \int_{-\pi}^{\pi}|f(x)-p(x)| d x+\left|\int p(x) \cos n x d x\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

whenever $n>N$.
Problem 6: Vi have to assume that $f(x)$ is a continuous function on $[-\pi, \pi]$ satisfying $f(-x)=f(x)$.

The function $\arccos t$ is well defined on $[-1,1]$ and satisfies $\arccos (\cos x)=x$ for $x \in[0, \pi]$. Hence $f(\arccos t)$ is a continuous function on $[-1,1]$. For each n there is after Weierstrass - a poly $p_{n}(t)$ defined in $[-1,1]$ such that $\left|f(\arccos t)-p_{n}(t)\right|<\frac{1}{n}$ for all $t \in[-1,1]$. Putting $t=\cos x$ we get

$$
\left|f(x)-p_{n}(\cos x)\right|<\frac{1}{n}
$$

for all $x \in[0, \pi]$ (since $\arccos (\cos x)=x$ for $x \in[0, \pi])$. Now both $f(x)$ and $\cos x$ are even functions, so the inequallity * also holds for x in $[-\pi, 0]$. The sequence $p_{n}(\cos x)$ the tends to $f(x)$ as $n \rightarrow \infty$.

Problem 7: Assume that there is a sequence of polynomials $\left\{P_{n}(x)\right\}$ that converges uniformly to $\frac{1}{x}$ in $(0,1)$. Let $\epsilon>0$ be a number. There is an N such that if $n \geq N$, then $\left|\frac{1}{x}-P_{n}(x)\right|<\epsilon$ for all $x \in(0,1)$. This implies that $\frac{1}{x}<P_{n}(x)+$ for all $x \in(0,1)$ which is absurd since the right side of the inequality is bounded whereas the left side is unbounded.

Problem 8: Assume that there is a sequence of polynomials $\left\{P_{n}(x)\right\}$ that converges uniformly to e^{x} in \mathbb{R}^{+}. Pick any $\epsilon>0$ and find a N such that if $n>N$, then $\left|e^{x}-P_{n}(x)\right|<\epsilon$ for all $x \in \mathbb{R}^{+}$. This implies that $e^{x}<P_{n}(x)+\epsilon$ and hence $1<e^{-x} P_{n}(x)+e^{-x} \epsilon$ for all $x \in \mathbb{R}^{+}$, which is absurd since the right side of the inequality tends to zero.

If we replace e^{x} by e^{-x} we get an inequality $\left|P_{n}(x)-e^{-x}\right|<\epsilon$ for all $x \in \mathbb{R}^{+}$, but e^{-x} tends to zero when $x \rightarrow \infty$ whereas $P_{n}(x)$ tends to ∞ or $-\infty$, so they cannot be only an ϵ apart.

Problem 9:

a) We use induction on n and assume that $f^{(n)}(x)=e^{-1 / x^{2} \frac{P_{n}(x)}{x^{N} n}}$ where $P_{n}(x)$ is some polynomial. We get when we differentiat:

$$
\begin{aligned}
f^{(n+1)}(x)= & e^{-1 / x^{2}} \frac{x^{N_{n}} P_{n}^{\prime}(x)-N_{n} x^{N_{n}-1} P_{n}(x)}{x^{2 N_{n}}}-e^{-1 / x^{2}} \frac{2 x}{x^{4}} \cdot \frac{p_{n}(x)}{x_{N_{n}}} \\
& e^{-1 / x^{2}} \frac{x_{N_{n}} P_{n}^{\prime}(x)-\left(N_{n} x^{N_{n}-1}+2 x^{N_{n}}\right) P_{n}(x)}{x^{N_{n}+3}}
\end{aligned}
$$

which certainly is of the form $e^{-1 / x^{2}} \frac{P_{n+1}(x)}{x^{N_{n+1}}}$ with $P_{n+1}(x)=x_{N_{n}} P_{n}^{\prime}(x)-\left(N_{n} x^{N_{n}-1}+\right.$ $\left.2 x^{N_{n}}\right) P_{n}(x)$ and $N_{n+1}=N_{n}+3$.
b) As $\lim _{y \rightarrow \infty} e^{-y^{2}} Q(y)=0$ for any rational function $Q(y)$, we see that $\lim _{x \rightarrow 0} f^{(n)}(x)=$ 0 for all n. This means that f has infinitely many derivatives in zero, and that they all take the value 0 there.
c) The Taylor series at the origin of f being $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$, it follows by what we just did, that the Taylor series is identically zero. But the function $e^{-1 / x^{2}}$ is not!

Problem 11: The binomial formula gives us

$$
\left(x e^{\alpha / n}+x-1\right)^{n}=\sum_{r=0}^{n}\left(e^{\alpha / n}\right)^{r} x^{r}(x-1)^{n-r}=\sum_{r=0}^{n} e^{r \alpha / n} x^{r}(x-1)^{n-r}
$$

and if $f(x)=e^{\alpha x}$ then $f\left(\frac{r}{n}\right)=e^{r \alpha / n}$.
Problem 11: The binomial formula gives us

$$
\left(x e^{\alpha / n}+x-1\right)^{n}=\sum_{r=0}^{n}\left(e^{\alpha / n}\right)^{r} x^{r}(x-1)^{n-r}=\sum_{r=0}^{n} e^{r \alpha / n} x^{r}(x-1)^{n-r}
$$

and if $f(x)=e^{\alpha x}$ then $f\left(\frac{r}{n}\right)=e^{r \alpha / n}$.

