
Ark5: Solutions

I have written down some very sketchy solutions to some of the exercises. I have only

treated the ones given for the friday sessions, and it has been done rather hastly, so

forgive me if there are errors. Still, I hope, they will be useful for you.

Problem 1: We have that

lim
n→∞

fn(x) =

�
0 if x ∈ [0, 1)

1 if x = 1

Hence f(1) = 1. Now fn(xn) = (1− 1
n)

n
which tends to e−1

. The sequence {fn} do not

converge uniformly to f , hence lemma 3.5.7 does not apply. �

Problem 2:

a) Let � > 0 be given. We have to produce an δ > 0 such that |f(n)− g(m)| < � once

d(n, m) < δ, and this for all f ∈ C(X, R). But the metric on x is discete which means

that d(n, m) = 1 if n �= m; hence if we choose any δ less than one, d(n, m) < δ implies

that n = m, and |f(n)− f(m)| = 0 < �.

b) As Rm
is equipped with the sup-norm metric, dRm

(f, g) = sup{|f(i)− g(i)| : 1 ≥
i ≤ m} which clearly is equal to d(f, g) = sup{|f(x)− g(x)| : x ∈ X} since X =

{1, 2, 3, . . . ,m}.
c) Recall what the Bolzano-Weierstrass theorem says: Every bounded sequence in Rm

has a convergent subsequence.

By 2.b) the map F gives a one to one corespondence between sequences in Rm

and C(X, R), and because F is an isometry, a sequence in Rm
converges if and only

if the corresponding sequence in C(X, R) converges. Furthermore, a sequence in Rm
is

bounded if and only if the same holds for the corresponding sequence in C(X, R).

Now, as the whole space C(X, R) is equicontinuous, any sequence will also be. And

hence every bounded sequence has a convergent subsequence by the A&A - theorem.

And this exactly what B&W say. �

Problem 3: First of all, if the function σ is constant its value must be zero since

σ(0) = 0, and the functions having σ = 0 as modulus of continuity are all constant.

Clearly a family of constant functions is equicontinuous (whatever � is, use any δ you

want).

If σ is not constant, the set {σ(x) : x ∈ [0,∞)} is an interval containing 0, but not

reduced to {0}. This since σ is continuous an nonconstant. Hence for any � > there is



Ark5: Solutions MAT2400 — spring 2012

a δ > 0 such that σ(δ) < �.

a) Let F be a family of functions from X to Y all having σ as modulus of continuity.

Let � > 0 be given and choose δ such that σ(δ) < �. Then if dX(x, y) < δ we get

dX(f(x), f(y)) < σ(dX(x, y)) ≤ σ(δ) < �

since σ is nondecreasing.

b) We want to apply the A&A theorem. We know that the family K is equicontinuous,

and have only to check that it is closed and bounded.

Boundedness : We have the inequality:

|f(x)| = |f(x)− f(x0)| ≤ σ(dX(x, x0)). (❃)

By assumption σ is continuous, and we know that dX(x, x0) is a continuous function of

x. Hence the composition σ(dX(x, x0)) is a continuos function of x. Since X is compact,

it has maximal value, say M . Then ❃ translate into:

|f(x)| = |f(x)− f(x0)| ≤ σ(dX(x, x0)) ≤M.

and we conclude that K is bounded.

Closedness : Let fn be a sequence in K converging to f . Clearly f(x0) = limn→∞ fn(x0) =

0. Let � > 0 be given and choose N such that |fn(z)− f(z)| < � whenever n ≥ N and

for all z ∈ X; which can be done since fn tends uniformly to f . The we get:

|f(x)− f(y)| ≤ |f(x)− fn(x)| + |fn(x)− fn(y)| + |fn(y)− f(y)| < 2� + σ(d(x, y)).

This holds for all � > 0, and it follows that

|f(x)− f(y)| ≤ σ(d(x, y)).

Concequently f ∈ K , that is, K is closed. �

Problem 4:

a) A polynomial is shaped like p(x) =
�n

k=0 akxk
where the ak’s are constants. This

gives �
p(x)f(x) dx =

n�

k=1

ak

�
xkf(x) dx = 0

since for each k,
�

xkf(x) dx = 0.

b) Vi have for any polynomial p(x):

�
f(x)(f(x)− p(x)) dx =

�
f(x)

2 dx−
�

f(x)p(x) dx =

�
f(x)

2 dx (❃)
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By Weierstrass’ approximation theorem we can, for each given � > 0, find a poly-

nomial such that |f(x)− p(x)| < � for all x ∈ [a, b]. Integration gives

�
|f(x)(f(x)− p(x))| dx ≤M(b− a)�,

where M = sup{|f(x)| : x ∈ [a, b]}. Hence by ❃
�

f(x)
2 dx < M(b − a)�, but then�

f(x)
2 dx = 0 since � > 0 can be choosen freely. This implies that f(x) = 0 since

f(x)
2

is a positive function. �

Problem 5:

a) If f(x) is continuously diffentiable, we get by partial integration:

� π

−π

f(x) cos nx dx = |π−πf(x)
sin nx

n
− 1

n

� π

−π

f �(x) sin nx dx = − 1

n

� π

−π

f �(x) sin nx dx

hence ����
� π

−π

f(x) cos nx dx

���� ≤
����
1

n

� π

−π

f �(x) sin nx dx

���� ≤
2πM

n
(❂)

where M = sup{|f �(x)| : x ∈ [−π, π]} which is finite since f � is continuous. Now as

n→∞, the right side of ❂ tends to zero.

b) By Weierstrass approximation theorem we may find, for each � > 0 given, a

polynomial p(x) shuch that |f(x)− p(x)| < �/2 for all x ∈ [−π, π]. Since p(x) is

continuously diffentiable, we may by 5.a) finde an N such that for n > N then��� p(x) cos nx dx
�� < �/2. This gives

����
� π

−π

f(x) cos

���� nx dx ≤
� π

−π

|f(x)− p(x)| dx +

����
�

p(x) cos nx dx

���� < �/2 + �/2 = �

whenever n > N . �

Problem 6: Vi have to assume that f(x) is a continuous function on [−π, π] satisfying

f(−x) = f(x).

The function arccos t is well defined on [−1, 1] and satisfies arccos(cos x) = x for

x ∈ [0, π]. Hence f(arccos t) is a continuous function on [−1, 1]. For each n there is —

after Weierstrass — a poly pn(t) defined in [−1, 1] such that |f(arccos t)− pn(t)| < 1
n

for all t ∈ [−1, 1]. Putting t = cos x we get

|f(x)− pn(cos x)| <
1

n
(✸)
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for all x ∈ [0, π] (since arccos(cos x) = x for x ∈ [0, π]). Now both f(x) and cos x are

even functions, so the inequallity ✸ also holds for x in [−π, 0]. The sequence pn(cos x)

the tends to f(x) as n→∞. �

Problem 7: Assume that there is a sequence of polynomials {Pn(x)} that converges

uniformly to
1
x in (0, 1). Let � > 0 be a number. There is an N such that if n ≥ N ,

then
�� 1
x − Pn(x)

�� < � for all x ∈ (0, 1). This implies that
1
x < Pn(x)+ for all x ∈ (0, 1)

which is absurd since the right side of the inequality is bounded whereas the left side

is unbounded. �

Problem 8: Assume that there is a sequence of polynomials {Pn(x)} that conver-

ges uniformly to ex
in R+

. Pick any � > 0 and find a N such that if n > N ,

then |ex − Pn(x)| < � for all x ∈ R+
. This implies that ex < Pn(x) + � and hen-

ce 1 < e−xPn(x) + e−x� for all x ∈ R+
, which is absurd since the right side of the

inequality tends to zero.

If we replace ex
by e−x

we get an inequality |Pn(x)− e−x| < � for all x ∈ R+
, but

e−x
tends to zero when x → ∞ whereas Pn(x) tends to ∞ or −∞, so they cannot be

only an � apart. �

Problem 9:

a) We use induction on n and assume that f (n)
(x) = e−1/x2 Pn(x)

xNn where Pn(x) is some

polynomial. We get when we differentiat:

f (n+1)
(x) =e−1/x2 xNnP �

n(x)−NnxNn−1Pn(x)

x2Nn
− e−1/x2 2x

x4
· pn(x)

xNn

e−1/x2 xNnP �
n(x)− (NnxNn−1

+ 2xNn)Pn(x)

xNn+3

which certainly is of the form e−1/x2 Pn+1(x)

xNn+1
with Pn+1(x) = xNnP �

n(x) − (NnxNn−1
+

2xNn)Pn(x) and Nn+1 = Nn + 3.

b) As limy→∞ e−y2
Q(y) = 0 for any rational function Q(y), we see that limx→0 f (n)

(x) =

0 for all n. This means that f has infinitely many derivatives in zero, and that they all

take the value 0 there.

c) The Taylor series at the origin of f being
�∞

n=0
f (n)(0)

n! xn
, it follows by what we just

did, that the Taylor series is identically zero. But the function e−1/x2
is not! �
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Problem 11: The binomial formula gives us

(xeα/n
+ x− 1)

n
=

n�

r=0

(eα/n
)
rxr

(x− 1)
n−r

=

n�

r=0

erα/nxr
(x− 1)

n−r

and if f(x) = eαx
then f(

r
n) = erα/n

. �

Problem 11: The binomial formula gives us

(xeα/n
+ x− 1)

n
=

n�

r=0

(eα/n
)
rxr

(x− 1)
n−r

=

n�

r=0

erα/nxr
(x− 1)

n−r

and if f(x) = eαx
then f(

r
n) = erα/n

. �
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