
Ark2: Exercises for MAT2400 — Complete and compact spaces,
continuous functions

Completeness and compactness are two extremely important concepts. Their strength

is illustraded by the two main theorems in these sections, the Banach fixed point

theorem and the Extreme value theorem. They are both existence theorems ( there is

a fixed point; there is a point where f attains its max value) and in both cases the

results hang on convergence certain sequences

Of course, continuous functions are everywhere!! No need to underline their impor-

tance!

The exercises on this sheet covers the paragraphs 12.4 to 12.3 in the book and the

sections 2.1 to 2.6 in Tom’s notes.

They are the topics for week 6 (at least some of them, there are too many for one

week):

Thursday 10/2: № 2, 7, 8, 16, 17, 19, 20.

Friday 9/2 : № 1, 5, 6, 9, 11, 12, 15, 23, 24.

Key words: Cauchy sequences, complete metric spaces, Banach’s fixed point theorem,

compact metric spaces, bounded metric spaces, the Extreme value theorem, totally

bounded metric spaces.

Cauchy sequences

Problem 1. Let R+ = {x ∈ R : x > 0} be provided with the metric d(x, y) =

��� 1
x
− 1

y

���
from exercise 8.b) on Ark1.

a) Show that the sequence {an} with an = n is a Cauchy sequence. Decide if it converges

or not.

b) Is the sequence {1/n} Cauchy?

c) Show that any sequence {an} i R+ converges in R+ in the metric d above if and

only if it converges in R+ in the standard metric |x− y|, and that the limits in the two

cases are equal.

Problem 2. Assume that we are given two metrics d1 and d2 on a set X. Assume

further that there exists a positiv function φ defined on the interval [0, t] for some t
such that

Bd1(x; φ(r))⊆Bd2(x; r)

for all points x ∈ X and all r ∈ [0, t].
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a) Show that if a sequence {an} of points in X is Cauchy with respect to d1 then it is

Cauchy with respect to d2.

b) Show that if a subset U ⊆X is open with respect to d2 then it is open with respect

to d1.

c) If the two metrics d1 and d2 are equivalent in the sense of Tom’s notes 2.2, Problem
7 (page 27) they satisfy the condition above, both for d1 and d2 and with their roles

reversed.

d) Give an example of two metrics on the same set X satisfying the condition above,

but not being equivalent. Hint: Take a look at the metrics in problem 23.a) on Ark1.

Continuous functions

Problem 3. (Tom’s notes 4, Problem 2.2 (page 27)). Let (X, d) be a metric space

and let a ∈ X be a point. Show that d(x, a) is a continuous function of x. (We are

using the standard metric |x− y| on R.)

Problem 4. If d1 and d2 are metrics on X satisfying the condition in problem 2, and

f : X → Y is a function into a metric space (Y, e), show that if f is continuous with

resprect to d2 then it is continuous with resprect to d1.

Problem 5. Let f(x) = sin x. For which open intervals I = �a, b�⊆ [0, 2π] is f(I)

closed? For which I is f(I) open?

Problem 6. Let a ∈ [0, 1] be a point. Define a function Ea : C([0, 1]) → R by sending

a function f ∈ C([0, 1]) to its value at a; i.e., it is given by Ea(f) = f(a).

a) Show that Ea is continuous in the sup-norm metric on C([0, 1]).

b) Is it continuous in the metric given by d(f, g) =
� 1

0 |f(x)− g(x)| dx?

Problem 7. (Cartesian products). Let (X, dX) and (Y, dY ) be two metric spaces.

There are several ways of putting a metric on the Cartesian product X × Y . One is

using the Manhattan idea; that is, we define dMH by

dMH((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

a) (Tom’s notes 2.1, Problem 9 (page 24)). Show that this is a metric.

b) Let pX : X×Y → X and pY : X×Y → Y be given by pX(x, y) = x and pY (x, y) = y.

We call them the projections onto X and Y . Show that the two projections both are
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continuous. If (Z, dZ) is a third metric space, show that a function f : Z → X × Y is

continuous at z ∈ Z if and only if the two compositions pX ◦ f and pY ◦ f are.

c) Let (X �, dX�) and (Y �, dY �) be another pair of metric spaces. If f : X → X � and

g : Y → Y � are two functions continuous at x ∈ X and y ∈ Y repectively, show that

then the function f × g : X × Y → X � × Y � given by (f × g)(x, y) = (f(x), g(y)) is

continuous at (x, y), where the two Cartesian products are both equipped with their

Manhattan metrics. Hint: pX ◦ f × g = f ◦ pX� and pY ◦ f × g = g ◦ pY � .

d) Show that the diagonal map ∆: X → X × X given by x �→ (x, x) is continuous

(where we still use the Manhattan metric on the product).

e) If f and g are real valued functions on the metric space (X, d), show that the

product fg and the sum f + g are continuous, and that fg−1 is continuous at points

where g(x) �= 0. Hint: Use a) above and the fact that the composition of continuous

functions is continuous. You may use the well known facts that the functions xy, x+ y
and x/y of two real variables are continuous in the Euclidian metric where defined, and

swich to the Manhattan metric by problem 4.

f) Show that |f | and the two functions s(x) = sup {f(x), g(x)} and i(x) = inf{f(x), g(x)}
are continuous. Hint: Use c) above and some appropriate functions of two real vari-

ables.

Problem 8. (Basically Tom’s notes 2.6, Problem 13 (page 43)). Let A and B be two

subsets of a metric space (X, d). Define the distance between A and B as

dist(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}.
Show that if A and B are compact and disjoint, then dist(A, B) > 0. Give an example

of sets A and B with A compact and B closed such that dist(A, B) = 0.

Problem 9. We denote by T ⊆C([−π, π]) the subset whose elements are of the form

T (x) =

N�

n=0

an sin nx + bn cos mx,

where an and bn are real numbers and we furnish it with the metric induced from the

sup-norm metric on C([−π, π]). We call such functions trigonometric polynomials or

finite Fourier series.

Show that the function D : T → T sending a trigonometric polynomial T (x) to

its derivative T �(x) is not continuous. Hint: For example, take a look at the sequence
1
n

sin nx.

Problem 10. Let X be a compact metric space and let f(x) and g(x) be two continuous

real valued functions on X such that f(x) < g(x). Assume that 0 < g(x) for all x ∈ X.

Prove that there is a real constant c < 1 such that f(x) ≤ cg(x) for all x ∈ X.
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Complete spaces

Problem 11. Which of the following subsets of R2 with standard metric are complete?

a) {(x, y) : x ≥ 0, y ≥ 0}.
b) {(x, y) : x2 + y2 > 0}.
c) R2 \ Q×Q.

Problem 12. Let (X, d) be a metric space. Let A and B be two subsets of X which

we furnish with the induced metrics. Show that if both A and B are complete, then

both the intersection A ∩B and the union A ∪B are complete.

Problem 13. (Tom’s notes 2.5, Problem 3 (page 37)). If A is a subset of a metric

space (X, d), the diameter diam(A) is defined to be

diam(A) = sup{d(x, y) : x, y ∈ A}.

Let An be a collection of subsets of X such that An+1⊆An and diam(An) → 0 as

n → ∞. Let {an} be a sequence of points in X with an ∈ An. If X is complete, show

that an converges.

Problem 14. (Tom’s notes 2.5, Problem 4 (page 37)). Assume that X has two equi-

valent metrics d and d�. Show that X is complete with respect to d if and only if it is

complete with respect to d�.

Compact spaces

Problem 15. We let n be a naturtal number and equip Rn with the standard metric.

a) Show that the set

∆n = {(x1, . . . , xn) : 0 ≤ xi for 1 ≤ i ≤ n and

n�

i=1

xi = 1}

is compact.

b) What about the set

{(x1, x2, x3, x4, x5) : 0 ≤ xi for 1 ≤ i ≤ 5 and

4�

i=1

xi ≤ 1}?
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Problem 16. (Tom’s notes 2.5, Problem 10 (page 42)). Show that a finite union of

compact subsets of a metric space X is compact. Show that the intersection of any

collection (finite or not) of compact subsets is compact.

Problem 17. (Tom’s notes 2.5, Problem 11 (page 42)). If (X, d) is a metric space

and K1⊇K2⊇K3⊇ . . . is a descending chain of compact subsets, prove that the in-

tersection
�

i
Ki is non-empty.

Problem 18. Let (X, d) and (Y, e) be two compact metric spaces. Show that the

Cartesian product X × Y is compact when equipped with the Manhattan metric from

exercise 7.

Problem 19. Let X be a compact metric space. Let K be a collection of compact

subsets of X with the property that the intersection of any finite subcollection of K
is nonempty — i.e.,

�
r

i=1 Ki �= ∅ whenever K1, . . . , Kr ∈ K ) — then
�

K∈K K �= ∅.
Hint: Assume that

�
K∈K K = ∅. Then {Kc : K ∈ K } is an open covering of X

with no finite subcovering.

Problem 20. Let e(x, y) be the metric on R given by e(x, y) =
|x−y|

1+|x−y| .

a) Show that a sequence {an} is a Cauchy sequence with respect to e if and only if it

is a Cauchy sequence with respect to the standard metric |x− y|. Hint: Small balls in

the metrics e(x, y) and |x− y| are the same. Take a look at exercise 23.a) from Ark1.

b) Is R complete with resprect to the metric e? Hint: Exercise 2.a).

c) Show that R is bounded but not compact with respect to the metric e.

d) Explain (directly) why it is not totally bounded. Hint: Small balls in the metrics

e(x, y) and |x− y| are the same.

Problem 21. (The mole metric). Let f be the function defined on R+ by

f(x) =

�
x if 0 ≤ x < 1

1 if x > 1.

Let dm(x, y) = f(|x− y|).
a) Show that this a metric on R. We may call it the mole metric: If points are close

(closer than one meter), their distance is the usual one, but are they far apart (more

than one meter) we do not distinguish between their distances; they are just far apart.

— 5 —



Ark2: Complete and compact spaces MAT2400 — spring 2012

b) Show that the “R of the moles” (i.e., R with the metric dm ) is complete and

bounded but not compact. Is it totally bounded? Why not?

Problem 22. Let n be a natural number and let Pn([0, 1]) be the subset of C([0, 1])

consisting of polynomials of degree at most n.

a) Show that the map sending a point (a0, .., an) ∈ Rn+1 to the polynomial
�

n

i=0 aiT i

is a continuous, bijective map between Rn with the Manhattan metric (and hence

with the standard, Euclidian metric) and Pn([0, 1]) with the metric induced from the

sup-norm metric.

b) Show that the set of polynomials on [0, 1] with degree bounded by n and coefficient

bounded by a positive number M ( i.e., the poly’s
�

n

i=0 aiT i with |ai| ≤ M) form a

compact set.

c) Show by examples that the set of poly’s in b) is no longer compact if we let go of

either of the boundedness conditions.

Banach’s fixed point theorem

Problem 23. Let f(x) = x2+1/9. Show that f defines a contractrion f : [−1/3, 1/3] →
[−1/3, 1/3]. Determine the fixed point.

Problem 24. Let F : R2 → R2 be given by F (x, y) = (
1
3x + 1, 1

5y + 1).

a) Show that F is a contraction.

b) Determine the fixed point of F .

Problem 25. (Tom’s notes 2.5, Problem 5 (page 37)). Assume that f : [0, 1] → [0, 1]

is a differentiable function, and that there is a number s < 1 such that |f �(x)| < s for

all x ∈ (0, 1). Show that there is exactly one point a ∈ [0, 1] such that f(a) = a.

Problem 26. (Tom’s notes 2.5, Problem 7 (page 37)). Assume that (X, d) is a com-

plete metric space, and that f : X → X is a function such that f ◦n is a contraction for

some n ∈ N. Show that f has a unique fixed point.

Problem 27. Let A : Rn → Rn be a linear map. We assume that Rn has a basis of

orthogonal eigenvectors for A, and that all the eigenvalues of A are of absolute value

less than one, i.e., if the eigenvalues are λ1, . . . ., λn then |λi| < 1 for 1 ≤ i ≤ n.

a) Show that A is a contraction. What is the fixed point?

b) Let b ∈ Rn be any point and let f(x) = A(x) + b. Show that f is a contraction.

Find an explicit formula for the fixed point of f in terms of A and b. Hint: The linear

map I − A is invertible.
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Problem 28. Let 0 < λ < 1 be a number, and let C([0, λ]) be the space of continuous

functions on [0, λ] with the sup-norm metric.

Define a map F : C([0, λ]) → C([0, λ]) by F (f) = 1 +
�

x

0 f(t) dt.

a) Show that F is a contraction.

b) Start with f0(t) = 1, the constant function with value one, and compute F (f0), F ◦2(f0),

and F ◦3(f0).

c) Guess a general formula for F ◦n(f0) and prove it. Find the fixed point for F . (We

do not yet know that C([0, λ]) is complete, and can not apply Banach directly).

d) What happens if you instead start with another function; sin x for example?
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