Ark5: Exercises for MAT2400 — Weierstrass' approximation theorem

The exercises on this sheet cover the sections 3.7 Tom's notes, but with a few more exercises from 3.5. They are for the groups on Thursday, Mars 1 and Friday, Mars 2. With the following distribution:

Thursday, Mars 1: No 2, 3, 7, 9, 10, 12. The rest for Friday

Key words: Uniform approximation by polynomials, Weierstrass' approximation theorem, Bernstein polynomials.

Arzelà - Ascoli

PROBLEM 1. Consider the sequence $f_n(x) = x^n$ of functions on [0,1] and the sequence of points $x_n = 1 - \frac{1}{n}$. Show that $\{f_n\}$ converges pointwise to a function f and determine the limit function f. Show that $f_n(x_n) \neq f(1)$. Relate this to **Lemma 3.5.7** in Tom's. HINT: Revivement of old knowlegde: $\lim_{n\to\infty} (1-\frac{1}{n})^n = e^{-1}$.

PROBLEM 2. Let $m \in \mathbb{N}$ and let $X = \{1, 2, \dots, m\}$ equipped with the discrete metric.

- a) Show that the whole space $C(X,\mathbb{R})$ is equicontinuous.
- b) Show that the map $F: C(X, \mathbb{R}) \to \mathbb{R}^m$ given by $F(f) = (f(1), f(2), \dots, f(m))$ is an isometry when we equip \mathbb{R}^m with the sup-norm metric.
- c) Show that the Arzelà-Ascoli theorem in this setting is just the Bolzano-Weierstrass theorem.

PROBLEM 3. (Tom's notes 3.5, Problem 6 (page 67)). Assume that (X, d_X) and (Y, d_Y) are two metric spaces, and let $\sigma: [0, \infty) \to [0, \infty)$ be a nondecreasing, continuous function such that $\sigma(0) = 0$. We say that σ is a modulus of continuity for a function $f: X \to Y$ if

$$d_Y(f(u), f(v)) \le \sigma(d_X(u, v))$$

for all $u, v \in X$.

a) Show that a family of functions with the same modulus of continuity is equicontinuous.

¹This means that F is bijective and preserves distances

b) Assume that (X, d_X) is compact, and let $x_0 \in X$. Show that if σ is a modulus of continuity, then the set

$$\mathscr{K} = \{f \colon X \to \mathbb{R}^n : f(x_0) = 0 \text{ and } \sigma \text{ is a modulus of continuity for } f \}$$

is compact.

c) Show that every function in $C([a,b],\mathbb{R}^m)$ has a modulus of continuity.

Weierstrass' approximation theorem

PROBLEM 4. (Tom's notes 3.7, Problem 4 (page 76)). Assume that f is a continuous real valued function on [a,b] such that $\int_a^b x^k f(x) dx = 0$ for $k = 0, 1, 2, \ldots$

- a) Show that $\int_a^b p(x)f(x) dx = 0$ for all polynomials p.
- b) Use Weierstrass' approximation theorem to show that $\int_a^b f(x)^2 dx = 0$. Conclude that f(x) = 0 for all $x \in [a, b]$,

PROBLEM 5. Let f(x) be a continuous function on the inerval $[0, 2\pi]$. Show that

$$\lim_{n \to 0} \int_0^{2\pi} f(x) \cos nx \, dx = 0. \tag{*}$$

HINT: First, use partial integration to show that \star holds whenever f is continuously differentiable. Then use the Weierstrass approximation theorem to treat the general case.

PROBLEM 6. Let f(x) be a function defined on $[-\pi, \pi]$ satisfying f(-x) = f(x) for all $x \in [-\pi, \pi]$. Show that there is a sequences of polynomials $P_n(t)$ such that $P_n(\cos x)$ converges uniformly to f(x) on $[-\pi, \pi]$. HINT: Use Weierstrass' approximation theorem on the function $f(\arccos t)$ for $t \in [-1, 1]$.

PROBLEM 7. (Tom's notes 3.7, Problem 1 (page 76)). Show that there is no sequence of polynomials that converges uniformly to $\frac{1}{x}$ on the interval (0,1).

PROBLEM 8. (Tom's notes 3.7, Problem 2 (page 67)). Show that there is no sequence of polynomials that converges uniformly to e^x on $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$.

Is there a sequence of polynomials that converges uniformly to e^{-x} on \mathbb{R}^+ ?

PROBLEM 9. (Tom's notes 3.7, Problem 3 (page 76)). This exercise illustrates why Taylor polynomials are no substitute for Weierstrass' approximation.

We let the function f be defined as

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

a) Show that for $x \neq 0$ the *n*-th derivative of f has the form

$$f^n(x) = e^{-1/x^2} \frac{P_n(x)}{x^{N_n}},$$

where $P_n(x)$ is a polynomial and N_n is som natural number. HINT: Use induction on n.

- b) Show that $f^n(0) = 0$ for all $n \in \mathbb{N}$.
- c) Show that the Taylor polynomials of f at 0 do not converge to f except in the point 0.

PROBLEM 10. (Tom's notes 3.7, Problem 5 (page 76)). The aim of this exercise is to show that C([a,b]) with the sup-norm metric is a separable metric space.

- a) Assume that (X, d) is a metric space and that $S \subseteq T$ are two subsets. Show that if S is dense in (T, d_T) (T with induced metric) and T is dense in X, then S is dense in X.
- b) Show that for any polynomial p, there is a sequence of polynomials q_n with rational coefficients that converge uniformly to p on [a, b].
- c) Show that the subset of C([a,b]) consisting of polynomials with rational coefficients is dense.
- d) Show that C([a,b]) is separable.

Bernstein polynomials

PROBLEM 11. Show that for any $\alpha \in \mathbb{R}$ and any natural number n the equality $B_n(e^{\alpha x};x) = (xe^{\alpha/n} + 1 - x)^n$ is true.

PROBLEM 12. Let f(x) be continuously differentiable on [0, 1]. Let $B_n(f; x)$ be the *n*-th Bernstein polynomial of f, *i.e.*, we have

$$B_n(f;x) = \sum_{r=0}^{n} f(\frac{r}{n}) \binom{n}{r} x^r (1-x)^{n-r}.$$

a) Show that the following equality for the derivative $B'_n(f;x)$ holds true:

$$B'_{n+1}(f;x) = (n+1)\sum_{r=0}^{n} \Delta f(\frac{r}{n+1}) \binom{n}{r} x^{r} (1-x)^{n-r},$$

where $\Delta f(t) = f(t + \frac{1}{n+1}) - f(t)$.

- b) Use the mean value theorem to show that there are points c_r between $\frac{r}{n+1}$ and $\frac{r+1}{n+1}$ such that $(n+1)(f(\frac{r+1}{n+1})-f(\frac{r}{n+1}))=f'(c_r)$. c) Show that the sequence $\{B'_n(f;x)\}$ of the derived Bernstein polynomials converges
- uniformly to f'.