
MAT2400 Mandatory assignment 2

All the individual subproblems carry the same weight, and to pass you need a score of

at least 50% (which means 6 of the 12 subproblems). The assignment must be handed

in in the special box at the 7. floor in Niels Henrik Abels hus (mattebygget) before 14.30

Thursday 3. May. Remember to fill in and attach a frontpage — frontpages are found

nearby the box or you may find it on the net.

Notation: For any function f of one real variable, f(a+
) denotes the limit of f(x)

when x tends to a from above (if it exists); i.e., f(a+
) = limt→a+ f(t). Similarly, f(a−)

denotes the limit of f(x) when x tends to a from below (if it exists).

Problem 1.

The aim of this problem is to study a phenomenon which is called Gibb’s phenomenon.

At every simple jump discontinuity of a function f , the partial sums of the Fourier

series of f “overshoots” near the singularity by an amount about 9% of the “jump” of

the function.

To be presise, assume that f(x) has a jump singularity at a; i.e., d = f(a+
) −

f(a−) �= 0 and is continuous elsewhere in a neighbourhood of a. For simplicity we

assume that d > 0. We let sn(x) be the n-th partial sum of the Fourier series of f .

Then there is a sequence {xn} tending to a from above such that sn(xn) > f(a+
)+αd,

where the constant α satisfies α ≈ 0.089, i.e., about 9%. There is a similar sequence

{yn} tending to a from below with sn(yn) < f(a−)− αd

In this this problem we will study Gibbs phenomenon for the particular function

given in (−π, π) by:

d(x) =






π/2 if 0 < x < π

0 if x = 0

−π/2 if − π < x < 0

a) Compute the Fourier coefficients of d, and show that we have the equality

d(x) = 2

∞�

k=1

sin (2k − 1)x

2k − 1

for all x ∈ (−π, π).
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b) Let the partial sums of the Fourier series of d(x) be denoted by dn(x). Show that

we have

dn(x) = 2

n�

k=1

sin (2k − 1)x

2k − 1
=

� x

0

sin 2nt

sin t
dt.

Hint: Compute the derivative of dn(x) and use that 2
�n

k=1 cos(2k − 1)x =
sin 2nx
sin x . To

prove the last formula, use the for us now well used and classical formula 2 sin α cos β =

sin(β + α)− sin(β − α).

c) Show that for t ≥ 0 the following inequality holds true

0 ≤ t− sin t ≤ t3/6.

Use that inequality to prove that

����
1

sin t
− 1

t

���� ≤
π

12
t,

when 0 < t ≤ π/2.

d) Prove that for all n and all 0 < x < π/2:

����dn(x)−
� 2nx

0

sin u

u
du

���� <
π

24
x2

and use this to prove that for a given � > 0 there is an n0 such that if n ≥ n0, then

dn(π/2n) > π/2 + απ − �

where the constant α is given by α = π−1
(
� π

0
sin u

u du− π/2). Hence

dn(π/2n) ≥ π/2 + 0.089π.

because one may compute α = 0.08949 . . . . (You can consider that value as given!).

Problem 2.

Let C = C([0, 1], R) be the Banach space of continuous real valued functions on the

interval [0, 1] with norm given by �f� = sup{|f(x)| : x ∈ [0, 1]}. Fix an element g ∈ C,

and let I : C → C be the map given by

I(f)(x) =

� x

0

f(t)g(t) dt.
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a) Show that I is a bounded linear map; that is, I is linear and there is a positive

constant M such that �I(f)� ≤ M �f� for all f ∈ C. Determine the least such constant

if g is a positive function.

b) Show that the map I : C → C is uniformly continuous.

c) Show that for any bounded subset A⊆C the set I(A)⊆C is equicontinuous.

d) Show that the closure I(A) is a compact subset.

e) For each real number λ �= 0, let Vλ = {f ∈ C : I(f) = λf}. Show that Vλ is a

subvector space of C. Determine all functions in Vλ.

Problem 3.

Let F (x) be a strictly increasing function. For any half open interval I = (a, b ] define

m(I) = F (b)− F (a), and for any set E⊆R, let

ν∗(E) = inf{
�

I∈A

m(I) : A}

where A runs through all countable coverings of E by half open intervals (a, b ].

a) Show that ν∗(E) ≥ 0, and that ν∗ is monotone; i.e., ν∗(E �
) ≤ ν∗(E) whenever

E �⊆E.

b) Show that ν∗ is semiadditive; that is

ν∗(
∞�

n=1

En) ≤
∞�

n=1

ν∗(En)

for any family {En} of subsets of R.

c) If x ∈ R, show that ν∗({x}) = F (x)− F (x−), and hence ν∗{x} = 0 if and only if F
is continuous from the left at x.
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