MAT2400 Assignment 2 - Solutions

Notation: For any function f of one real variable, $f(a^+)$ denotes the limit of f(x) when x tends to a from above (if it exists); *i.e.*, $f(a^+) = \lim_{t\to a^+} f(t)$. Similarly, $f(a^-)$ denotes the limit of f(x) when x tends to a from below (if it exists).

Problem 1.

The aim of this problem is to study a phenomenon which is called *Gibb's* phenomenon. At every simple jump discontinuity of a function f, the partial sums of the Fourier series of f "overshoots" near the singularity by an amount about 9% of the "jump" of the function.

To be presise, assume that f(x) has a jump singularity at a; *i.e.*, $d = f(a^+) - f(a^-) \neq 0$ and is continuous elsewhere in a neighbourhood of a. For simplicity we assume that d > 0. We let $s_n(x)$ be the *n*-th partial sum of the Fourier series of f. Then there is a sequence $\{x_n\}$ tending to a from above such that $s_n(x_n) > f(a^+) + \alpha d$, where the constant α satisfies $\alpha \approx 0.089$, *i.e.*, about 9%. There is a similar sequence $\{y_n\}$ tending to a from below with $s_n(y_n) < f(a^-) - \alpha d$

In this this problem we will study Gibbs phenomenon for the particular function given in $(-\pi, \pi)$ by:

$$d(x) = \begin{cases} \pi/2 & \text{if } 0 < x < \pi \\ 0 & \text{if } x = 0 \\ -\pi/2 & \text{if } -\pi < x < 0 \end{cases}$$

a) Compute the Fourier coefficients of d, and show that we have the equality

$$d(x) = 2\sum_{k=1}^{\infty} \frac{\sin{(2k-1)x}}{2k-1}$$

for all $x \in (-\pi, \pi)$.

SOLUTION: The function is odd, so its Fourier series is a pure sine-series, and we need only compute

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} d(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} \frac{\pi}{2} \sin nx \, dx = \Big|_0^{\pi} \frac{1}{n} (-\cos nx) = \frac{(1 - (-1)^n)}{n},$$

which equals 0 if n is even and $\frac{2}{n}$ if n is odd. This gives that the Fourier series of d(x) is

$$2\sum_{k=1}^{\infty} \frac{\sin{(2k-1)x}}{2k-1}.$$

Clearly the function d(x) has one-sided derivatives everywhere, hence by Dini's test (or one of the corollaries, **Corollary 14.12.4** in Tom's) the Fourier series converges to $(d(x^+) + d(x^-))/2$ for every x, but this equals d(x) for all x.

b) Let the partial sums of the Fourier series of d(x) be denoted by $d_n(x)$. Show that we have

$$d_n(x) = 2\sum_{k=1}^n \frac{\sin(2k-1)x}{2k-1} = \int_0^x \frac{\sin 2nt}{\sin t} \, dt.$$

HINT: Compute the derivative of $d_n(x)$ and use that $2\sum_{k=1}^n \cos(2k-1)x = \frac{\sin 2nx}{\sin x}$. To prove the last formula, use the for us now well used and classical formula $2\sin\alpha\cos\beta = \sin(\beta+\alpha) - \sin(\beta-\alpha)$.

SOLUTION:

$$2\sum_{k=1}^{n}\cos(2k-1)x = \frac{1}{\sin x}\sum_{k=1}^{n}(\sin 2kx - \sin 2(k-1)x) = \frac{\sin 2nx}{\sin x}$$

for $x \neq 0, \pi$ or $-\pi$ (use the formula in the hint repeatedly with $\beta = (2k - 1)x$ and $\alpha = x$), and, in fact, if we interpret the right side as the appropriate limit $\lim \frac{\sin 2nx}{\sin x}$, it holds as well for $x = \pm \pi$ (both sides are zero) and for 0 (both sides are 2n). Computing the derivative of $d_n(x)$ term by term, we get

$$d'_n(x) = 2\sum_{k=1}^n \cos(2k-1)x,$$

and integrating, we obtain

$$d_n(x) = \int_0^x \frac{\sin 2nx}{\sin x}.$$

-2 -

c) Show that for $t \ge 0$ the following inequality holds true

$$0 \le t - \sin t \le t^3/6.$$

Use that inequality to prove that

$$\left|\frac{1}{\sin t} - \frac{1}{t}\right| \le \frac{\pi}{12}t,$$

when $0 < t \le \pi/2$.

SOLUTION: It is classical that $\sin t \leq t$ for all $t \geq 0$. To show the other inequality we let

$$f(x) = t - \sin t - t^3/3!$$

and compute $f'(t) = 1 - \cos t - t^2/2$ and $f''(t) = \sin t - t$ which is negative for t > 0. Hence f'(t) < 0 for t > 0 since f'(0) = 0. It follows that f(t) < 0 for t > 0 since f(0) = 0. We know that $\frac{2t}{\pi} \le \sin t$ for $0 \le t\pi/2$, so we get

$$\left|\frac{1}{\sin t} - \frac{1}{t}\right| = \left|\frac{t - \sin t}{t \sin t}\right| \le \frac{\pi}{2t^2} \cdot t^3/6 = \frac{\pi}{12}t.$$

d) Prove that for all n and all $0 < x < \pi/2$:

$$\left| d_n(x) - \int_0^{2nx} \frac{\sin u}{u} \, du \right| < \frac{\pi}{24} x^2$$

and use this to prove that for a given $\epsilon > 0$ there is an n_0 such that if $n \ge n_0$, then

$$d_n(\pi/2n) > \pi/2 + \alpha\pi - \epsilon$$

where the constant α is given by $\alpha = \pi^{-1} (\int_0^{\pi} \frac{\sin u}{u} du - \pi/2)$. Hence

$$d_n(\pi/2n) \ge \pi/2 + 0.089\pi.$$

because one may compute $\alpha = 0.08949...$ (You can consider that value as given!).

$$-3 -$$

SOLUTION: Integrating the inequality in d), we get

$$\left| \int_0^x \frac{\sin 2nt}{\sin t} \, dt - \int_0^x \frac{\sin 2nt}{t} \, dt \right| \le \int_0^x \frac{\pi t}{12} = \frac{\pi}{24} x^2.$$

Substituting u = 2nt in the second integral and using xxx, we get

$$\left| d_n(x) - \int_0^{2nx} \frac{\sin u}{u} \, du \right| \le \frac{\pi}{24} x^2.$$

Now, we put $x = \pi/2n$ in the formula above to get

$$d_n(\pi/2n) \ge \int_0^\pi \frac{\sin u}{u} \, du - \frac{\pi^3}{96} n^{-2} > \pi/2 + \alpha \pi - \epsilon$$

once *n* is so big that $\frac{\pi^3}{96}n^{-2} < \epsilon$.

Problem 2.

Let $C = C([0, 1], \mathbb{R})$ be the Banach space of continuous real valued functions on the interval [0, 1] with norm given by $||f|| = \sup\{|f(x)| : x \in [0, 1]\}$. Fix an element $g \in C$, and let $I: C \to C$ be the map given by

$$I(f)(x) = \int_0^x f(t)g(t) \, dt.$$

a) Show that I is a bounded linear map; that is, I is linear and there is a positive constant M such that $||I(f)|| \leq M ||f||$ for all $f \in C$. Determine the least such constant if g is a positive function.

-4-

SOLUTION: I is linear by wellknown properties of the integral (in fact linearity). To see that I is bounded, we compute

$$\begin{aligned} |I(f)(x)| &= \left| \int_0^x f(t)g(t) \, dt \right| \le \int_0^x |f(t)g(t)| \, dt \le \\ &\le \int_0^1 |f(t)g(t)| \, dt \le \sup |f(t)g(t)| \\ &\le \sup |f(t)| \sup |g(t)| = \|f\| \, M, \end{aligned}$$

where $M = \sup |g(t)|$. Hence $||I(f)|| \le ||f|| M$. If the function g is positive, we compute $||I(1)|| = \sup |g(t)|$. Hence $M = \sup |g(t)|$ is the smallest constant we can use.

b) Show that the map $I: C \to C$ is uniformly continuous. SOLUTION: Let $\epsilon > 0$ be given, and let the corresponding $\delta > 0$ be $\delta = \epsilon/M$. Then

$$\|I(f) - I(g)\| \le M \|f - g\| < M \cdot \epsilon/M = \epsilon$$

whenever $||f - g|| < \delta$,

c) Show that for any bounded subset $A \subseteq C$ the set $I(A) \subseteq C$ is equicontinuous. SOLUTION: Let K be a bound for A, that is $||f|| \leq K$ for all $f \in A$. We have

$$|I(f)(x) - I(f)(y)| = \left| \int_{y}^{x} f(t)g(t) \, dt \right| \le \int_{y}^{x} |f(t)g(t)| \, dt \le |x - y| \, KM$$

for $f \in A$. Then, given $\epsilon > 0$, we put $\delta = \epsilon/KM$, and obtain

$$|I(f)(x) - I(f)(y)| \le |x - y| KM \le \epsilon/KM \cdot KM = \epsilon$$

once $|x - y| < \delta$, and this holds for all $f \in A$.

d) Show that the closure $\overline{I(A)}$ is a compact subset.

SOLUTION: We want to apply the Arzela-Ascoli theorem. Now I(A) is equicontinuous since I(A) is; indeed, if $\epsilon > 0$ is given, choose $\delta > 0$ such that $|I(g)(x) - I(g)(y)| < \epsilon/3$ for all $g \in A$ and for all $|x - y| < \delta$. Pick an element $F \in I(A)$ and let $I(f_n)$ be a sequence converging (uniformly) to F. We have

$$|F(x) - F(y)| \le |F(x) - I(f_n)(x)| + |I(f_n)(x) - I(f_n)(y)| + |I(f_n)(y) - F(y)|$$

Let $\epsilon > 0$ be given. Choose N such that n > N gives $|F(x) - I(f_n)(x)| < \epsilon/3$ for all x. Then we get by the above inequality.

$$|F(x) - F(y)| < \epsilon.$$

Too see that I(A) is bounded, use that the norm is continuous, hence if $I(f_n)$ converges to F, then $||F|| = \lim_{n\to\infty} ||f_n|| < KM$. It follows from the A&A theorem, that $\overline{I(A)}$ is compact. (It is closed by definition).

e) For each real number $\lambda \neq 0$, let $V_{\lambda} = \{f \in C : I(f) = \lambda f\}$. Show that V_{λ} is a subvector space of C. Determine all functions in V_{λ} .

SOLUTION: It is clear that V_{λ} is a sub vector space (closed under addition and scalar multiplication). An element f lies in V_{λ} if $\int_{0}^{x} f(t)g(t) dt = \lambda f$. The left side of this equation is differentiable (integrals of continuous functions are) hence f is differentiable, and $\lambda f' = fg$. This is a first order differential equation with solution $f(x) = Ce^{\frac{1}{\lambda}\int_{0}^{x} g(t) dt}$ if $\lambda \neq 0$, but since $\lambda f(x) = \int_{0}^{x} f(t)g(t) dt$, we see that f(0) = 0, hence C = 0, and $f \equiv 0$; meaning that $V_{\lambda} = 0$. If $\lambda = 0$, it is a little more complicated. Then we get $f(x)g(x) \equiv 0$, hence V_0 is the subspace $\{f : f(x)g(x) \equiv 0\}$; and if e.g., g is positive, we get $f \equiv 0$.

Problem 3.

Let F(x) be a strictly increasing function. For any half open interval I = (a, b] define m(I) = F(b) - F(a), and for any set $E \subseteq \mathbb{R}$, let

$$\nu^*(E) = \inf\{\sum_{I \in \mathcal{A}} m(I) : \mathcal{A}\}\$$

where \mathcal{A} runs through all countable coverings of E by half open intervals (a, b]. a) Show that $\nu^*(E) \ge 0$, and that ν^* is monotone; *i.e.*, $\nu^*(E') \le \nu^*(E)$ whenever $E' \subseteq E$.

-6-

SOLUTION: Since F is increasing, m(I) = F(b) - F(a) > 0. Hence $\nu^*(E) \ge 0$, $\nu^*(E)$ being the supremum of a set of positive numbers. If $E' \subseteq E$, then any covering of E (of the type we use) is also a covering of E' (of the type we use). Hence $\nu^*(E')$ is the supremum of a smaller set than $\nu^*(E)$, so $\nu^*(E') \le \nu^*(E)$.

b) Show that ν^* is semiadditive; that is

$$\nu^*(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \nu^*(E_n)$$

for any family $\{E_n\}$ of subsets of \mathbb{R} .

SOLUTION: This is word by word the same proof as of **Proposition 5.1.4** page 146 in Tom's notes. Take a look at that.

c) If $x \in \mathbb{R}$, show that $\nu^*(\{x\}) = F(x) - F(x^-)$, and hence $\nu^*\{x\} = 0$ if and only if F is continuous from the left at x. SOLUTION: The sequence F(x-1/n), where $n \in \mathbb{N}$, is increasing with $F(x^-)$ as limit,

hence $F(x-1/n) \leq F(x^{-})$ for all n. Any half open interval (a, b] containing x contains an interval of the form (x-1/n, x] where $n \in \mathbb{N}$. Hence

$$m(I) = F(b) - F(a) \ge F(x) - F(x - 1/n) \ge F(x) - F(x^{-})$$

This shows that $\nu^*(\{x\}) \geq F(x) - F(x^-)$. On the other hand, $\nu^*(\{x\}) \leq m((x-1/n,x]) = F(x) - F(x-1/n)$ for all n, hence $\nu^*(\{x\}) \leq \inf_{n \in \mathbb{N}} \{F(x) - F(x-1/n)\} = F(x) - F(x^-)$; and thus $\nu^*(\{x\}) = F(x) - F(x^-)$. The function F is continuous from the left at x if and only if $F(x^-) = F(x)$, hence if and only if $\nu^*\{x\} = 0$, by what we just saw.