MAT?2400 Assignment 2 - Solutions

Notation: For any function f of one real variable, f(a™) denotes the limit of f(z)
when z tends to a from above (if it exists); i.e., f(at) = lim;_.+ f(¢). Similarly, f(a™)
denotes the limit of f(z) when z tends to a from below (if it exists).

Problem 1.

The aim of this problem is to study a phenomenon which is called Gibb’s phenomenon.
At every simple jump discontinuity of a function f, the partial sums of the Fourier
series of f “overshoots” near the singularity by an amount about 9% of the “jump” of
the function.

To be presise, assume that f(x) has a jump singularity at a; i.e., d = f(a™) —
f(a™) # 0 and is continuous elsewhere in a neighbourhood of a. For simplicity we
assume that d > 0. We let s, (x) be the n-th partial sum of the Fourier series of f.
Then there is a sequence {z, } tending to a from above such that s, (z,) > f(a™)+ ad,
where the constant « satisfies a ~ 0.089, i.e., about 9%. There is a similar sequence
{yn} tending to a from below with s,(y,) < f(a™) — ad

In this this problem we will study Gibbs phenomenon for the particular function
given in (—m, ) by:

/2 f0<z<mw
d(x) =<0 ifz=0
—m/2 if —m<ax<0
a) Compute the Fourier coefficients of d, and show that we have the equality

Zsm (2k — 1)z
2k —1

for all x € (—m,m).



ASSIGNMENT 2 — SOLUTIONS— SOLUTIONS MAT2400 — SPRING 2012

SOLUTION: The function is odd, so its Fourier series is a pure sine-series, and we need
only compute

1 [" 2 [T
bn:—/ d(:p)sinnxdx:—/ T sinnz dr =
m T Jo 2

0%(— cosnr) = w,

—T

which equals 0 if n is even and 2 if n is odd. This gives that the Fourier series of d(z)

1S
oo

sin (2k — 1)z
2 —_—
; 2k —1

Clearly the function d(z) has one-sided derivatives everywhere, hence by Dini’s test
(or one of the corollaries, Corollary 14.12.4 in Tom’s) the Fourier series converges to
(d(x*) +d(z7))/2 for every x, but this equals d(x) for all z.

b) Let the partial sums of the Fourier series of d(x) be denoted by d,(z). Show that

we have
n

sin (2k — 1)z ¥ sin 2nt
dn(x):22—:/0 dt.

2k —1 sint
k=1

HINT: Compute the derivative of d,,(x) and use that 2>, cos(2k — 1)z = 2202 To

sinx
prove the last formula, use the for us now well used and classical formula 2 sin a.cos § =

sin(f + «) — sin(f — ).

SOLUTION:
2iCOS(Qk e n (sin 2k — sin 2(k — 1)z) — S22
sin sin x
k=1 k=1
for x # 0,7 or —7 (use the formula in the hint repeatedly with § = (2k — 1)z and
a = x), and, in fact, if we interpret the right side as the appropriate limit lim %, it

holds as well for x = £7 (both sides are zero) and for 0 (both sides are 2n). Computing
the derivative of d,(x) term by term, we get

d (x) = QZCOS(QIC — 1)z,
k=1

and integrating, we obtain

dn@):/o sin m:‘

sin x
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c¢) Show that for ¢t > 0 the following inequality holds true
0<t—sint <t/6.

Use that inequality to prove that

when 0 < ¢t < 7/2.
SOLUTION: It is classical that sint < ¢ for all ¢t > 0. To show the other inequality we
let

f(z) =t —sint — /3!

and compute f'(t) =1 — cost — t*/2 and f”(t) = sint — ¢ which is negative for ¢ > 0.
Hence f'(t) < 0 for t > 0 since f'(0) = 0. It follows that f(¢) < 0 for ¢ > 0 since
f(0) = 0. We know that 2 < sint for 0 < tm/2, so we get

T T
< — 36 = —t.
= 22 / 12

1 1 B t—sint
sint t

tsint

d) Prove that for all n and all 0 < x < 7/2:

T 9
<_
24"

2nx _:
d, (z) _/O siny

u

and use this to prove that for a given € > 0 there is an ngy such that if n > ng, then
do(m/2n) > /2 + am — €
where the constant « is given by v = 7! ([ #2% du — 7/2). Hence

d,(7/2n) > 7/2 4 0.0897.

because one may compute o = 0.08949.... (You can consider that value as given!).

— 3 —
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SOLUTION: Integrating the inequality in d), we get

¥ sin 2nt * sin 2nt frtoom o
- dt — dt| < — = —a.
o sint 0 t o 12 24

Substituting u = 2nt in the second integral and using xxx, we get

2nxr :
dn(x)—/ smudu‘ <2
0

U _ﬂx

Now, we put x = m/2n in the formula above to get

T o3 3
d,(m/2n) > /0 sn;u du — %n’z >7/2+am —¢€
once n is so big that g—Zn_Q <.
Problem 2.

Let C' = C([0,1],R) be the Banach space of continuous real valued functions on the
interval [0, 1] with norm given by || f|| = sup{|f(z)| : z € [0,1]}. Fix an element ¢g € C,
and let I: C'— C' be the map given by

1(£)(x) = / " F ()l d.

a) Show that I is a bounded linear map; that is, I is linear and there is a positive
constant M such that ||[I(f)|| < M ||f]| for all f € C. Determine the least such constant
if ¢ is a positive function.
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SOLUTION: [ is linear by wellknown properties of the integral (in fact linearity). To
see that I is bounded, we compute

[1(f) ()] =

/Ogc f()g(t) dt’ < /Ogc IF(t)g(t)] dt <

< / F(0)g(0)] dt < sup|f(1)g(t)]
< sup |£(0)] sup |g(8)] = |I1| M,

where M = sup |g(t)]. Hence ||[I(f)]| < ||f|| M. If the function g is positive, we compute
|I1(1)|| = sup |g(t)|. Hence M = sup |g(t)| is the smallest constant we can use.

b) Show that the map I: C' — C' is uniformly continuous.
SOLUTION: Let € > 0 be given, and let the corresponding 6 > 0 be 6 = ¢/M. Then

11(f) =L@l < M[f —gl| <M-e¢/M =
whenever || f — g|| <,

c¢) Show that for any bounded subset A C C' the set I(A) C C' is equicontinuous.
SOLUTION: Let K be a bound for A, that is || f|| < K for all f € A. We have

(1)) = I(f)(y)| =

[ stsa] < [ dn < jo - K
y y
for f € A. Then, given € > 0, we put § = ¢/ KM, and obtain

1) (@) — 1)) < ¢ — y| KM < e/ KM - KM =

once |z —y| < J, and this holds for all f € A.
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d) Show that the closure /(A) is a compact subset.

SOLUTION: We want to apply the Arzela-Ascoli theorem. Now [ ( ) is equicontinuous
since I(A) is; indeed, if € > 0 is given, choose 6 > 0 such that |I(g)(z) — I(g)(y)| < €/3

for all g € A and for all |z —y| < 0. Pick an element F' € [(A) and let I(f,) be a
sequence converging (uniformly) to F'. We have

|F(z) = Fy)| < [F(x) = I(fo)(@)| + [T(fa)(z) = I(f) @) + [T(f2)(y) = F(y)]

Let € > 0 be given. Choose N such that n > N gives |F(x) — I(f,)(z)| < €/3 for all z.
Then we get by the above inequality.

|F(z) = Fy)| <e.

Too see that I(A) is bounded, use that the norm is continuous, hence if I(f,,) converges
to F, then [|[F|| = lim, o || fu|| < KM. It follows from the A&A theorem, that /(A)
is compact. (It is closed by definition).

e) For each real number A # 0, let V\, = {f € C : I(f) = Af}. Show that V) is a
subvector space of C. Determine all functions in V).

SOLUTION: It is clear that V) is a sub vector space (closed under addition and scalar
multiplication). An element f lies in Vy if [ f(t)g(t)dt = Af. The left side of this
equation is differentiable (integrals of continuous functions are) hence f is differentiable,
and \f' = fg. Thisis a ﬁrst order differential equation with solution f(x) = Cex Jo 9t
if X # 0, but since Af(x) = [ f(t)g(t)dt, we see that f(0) = 0, hence C' = 0, and
f = 0; meaning that V)\ =0.If )\ = O it is a little more complicated. Then we get
f(z)g(z) = 0, hence Vj is the subspace {f : f(z)g(x) = 0}; and if e.g., g is positive,
we get [ = 0.

Problem 3.

Let F(x) be a strictly increasing function. For any half open interval I = (a,b] define
m(I) = F(b) — F(a), and for any set £ CR, let

= inf{> m(I)
IeA

where A runs through all countable coverings of E by half open intervals (a, b].

a) Show that v*(F) > 0, and that v* is monotone; i.e., v*(E’) < v*(E) whenever
E'CE.
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SOLUTION: Since F' is increasing, m(I) = F'(b) — F(a) > 0. Hence v*(E) > 0, v*(E)
being the supremum of a set of positive numbers. If £/ C E, then any covering of E
(of the type we use) is also a covering of E’ (of the type we use). Hence v*(E’) is the
supremum of a smaller set than v*(E), so v*(E") < v*(E).

b) Show that v* is semiadditive; that is

(B < S0 (B

for any family {E,} of subsets of R.
SoLuTION: This is word by word the same proof as of Proposition 5.1.4 page 146
in Tom’s notes. Take a look at that.

¢) If z € R, show that v*({z}) = F(x) — F(z~), and hence v*{z} = 0 if and only if F'
is continuous from the left at x.

SOLUTION: The sequence F(z —1/n), where n € N, is increasing with F(z~) as limit,
hence F(x—1/n) < F(z~) for all n. Any half open interval (a, b] containing x contains
an interval of the form (z — 1/n, 2] where n € N. Hence

m(I) = F(b) = F(a) = F(x) = F(z — 1/n) > F(z) — F(a")

This shows that v*({z}) > F(x) — F(z7). On the other hand, v*({z}) <
m((x —1/n,z]) = F(z) — F(x — 1/n) for all n, hence v*({z}) < inf,en{F(x) — F(z —
1/n)} = F(z) — F(z7); and thus v*({z}) = F(x) — F(2™). The function F' is conti-
nuous from the left at = if and only if F/(x~) = F(z) , hence if and only if v*{z} =0,
by what we just saw.



