
MAT2400 Assignment 2 - Solutions

Notation: For any function f of one real variable, f(a+) denotes the limit of f(x)
when x tends to a from above (if it exists); i.e., f(a+) = limt→a+ f(t). Similarly, f(a−)
denotes the limit of f(x) when x tends to a from below (if it exists).

Problem 1.

The aim of this problem is to study a phenomenon which is called Gibb’s phenomenon.
At every simple jump discontinuity of a function f , the partial sums of the Fourier
series of f “overshoots” near the singularity by an amount about 9% of the “jump” of
the function.

To be presise, assume that f(x) has a jump singularity at a; i.e., d = f(a+) −
f(a−) �= 0 and is continuous elsewhere in a neighbourhood of a. For simplicity we
assume that d > 0. We let sn(x) be the n-th partial sum of the Fourier series of f .
Then there is a sequence {xn} tending to a from above such that sn(xn) > f(a+)+αd,
where the constant α satisfies α ≈ 0.089, i.e., about 9%. There is a similar sequence
{yn} tending to a from below with sn(yn) < f(a−)− αd

In this this problem we will study Gibbs phenomenon for the particular function
given in (−π, π) by:

d(x) =






π/2 if 0 < x < π

0 if x = 0

−π/2 if − π < x < 0

a) Compute the Fourier coefficients of d, and show that we have the equality

d(x) = 2
∞�

k=1

sin (2k − 1)x

2k − 1

for all x ∈ (−π, π).
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Solution: The function is odd, so its Fourier series is a pure sine-series, and we need
only compute

bn =
1

π

� π

−π

d(x) sin nx dx =
2

π

� π

0

π

2
sin nx dx =

����
π

0

1

n
(− cos nx) =

(1− (−1)n)

n
,

which equals 0 if n is even and 2
n if n is odd. This gives that the Fourier series of d(x)

is

2
∞�

k=1

sin (2k − 1)x

2k − 1
.

Clearly the function d(x) has one-sided derivatives everywhere, hence by Dini’s test
(or one of the corollaries, Corollary 14.12.4 in Tom’s) the Fourier series converges to
(d(x+) + d(x−))/2 for every x, but this equals d(x) for all x.

b) Let the partial sums of the Fourier series of d(x) be denoted by dn(x). Show that
we have

dn(x) = 2
n�

k=1

sin (2k − 1)x

2k − 1
=

� x

0

sin 2nt

sin t
dt.

Hint: Compute the derivative of dn(x) and use that 2
�n

k=1 cos(2k − 1)x = sin 2nx
sin x . To

prove the last formula, use the for us now well used and classical formula 2 sin α cos β =
sin(β + α)− sin(β − α).
Solution:

2
n�

k=1

cos(2k − 1)x =
1

sin x

n�

k=1

(sin 2kx− sin 2(k − 1)x) =
sin 2nx

sin x

for x �= 0, π or −π (use the formula in the hint repeatedly with β = (2k − 1)x and
α = x), and, in fact, if we interpret the right side as the appropriate limit lim sin 2nx

sin x , it
holds as well for x = ±π (both sides are zero) and for 0 (both sides are 2n). Computing
the derivative of dn(x) term by term, we get

d�n(x) = 2
n�

k=1

cos(2k − 1)x,

and integrating, we obtain

dn(x) =

� x

0

sin 2nx

sin x
.

— 2 —



Assignment 2 — solutions— solutions MAT2400 — spring 2012

c) Show that for t ≥ 0 the following inequality holds true

0 ≤ t− sin t ≤ t3/6.

Use that inequality to prove that

����
1

sin t
− 1

t

���� ≤
π

12
t,

when 0 < t ≤ π/2.
Solution: It is classical that sin t ≤ t for all t ≥ 0. To show the other inequality we
let

f(x) = t− sin t− t3/3!

and compute f �(t) = 1− cos t− t2/2 and f ��(t) = sin t− t which is negative for t > 0.
Hence f �(t) < 0 for t > 0 since f �(0) = 0. It follows that f(t) < 0 for t > 0 since
f(0) = 0. We know that 2t

π ≤ sin t for 0 ≤ tπ/2, so we get

����
1

sin t
− 1

t

���� =

����
t− sin t

t sin t

���� ≤
π

2t2
· t3/6 =

π

12
t.

d) Prove that for all n and all 0 < x < π/2:

����dn(x)−
� 2nx

0

sin u

u
du

���� <
π

24
x2

and use this to prove that for a given � > 0 there is an n0 such that if n ≥ n0, then

dn(π/2n) > π/2 + απ − �

where the constant α is given by α = π−1(
� π

0
sin u

u du− π/2). Hence

dn(π/2n) ≥ π/2 + 0.089π.

because one may compute α = 0.08949 . . . . (You can consider that value as given!).
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Solution: Integrating the inequality in d), we get

����
� x

0

sin 2nt

sin t
dt−

� x

0

sin 2nt

t
dt

���� ≤
� x

0

πt

12
=

π

24
x2.

Substituting u = 2nt in the second integral and using xxx, we get

����dn(x)−
� 2nx

0

sin u

u
du

���� ≤
π

24
x2.

Now, we put x = π/2n in the formula above to get

dn(π/2n) ≥
� π

0

sin u

u
du− π3

96
n−2 > π/2 + απ − �

once n is so big that π3

96n−2 < �.

Problem 2.

Let C = C([0, 1], R) be the Banach space of continuous real valued functions on the
interval [0, 1] with norm given by �f� = sup{|f(x)| : x ∈ [0, 1]}. Fix an element g ∈ C,
and let I : C → C be the map given by

I(f)(x) =

� x

0

f(t)g(t) dt.

a) Show that I is a bounded linear map; that is, I is linear and there is a positive
constant M such that �I(f)� ≤ M �f� for all f ∈ C. Determine the least such constant
if g is a positive function.
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Solution: I is linear by wellknown properties of the integral (in fact linearity). To
see that I is bounded, we compute

|I(f)(x)| =

����
� x

0

f(t)g(t) dt

���� ≤
� x

0

|f(t)g(t)| dt ≤

≤
� 1

0

|f(t)g(t)| dt ≤ sup |f(t)g(t)|

≤ sup |f(t)| sup |g(t)| = �f�M,

where M = sup |g(t)|. Hence �I(f)� ≤ �f�M . If the function g is positive, we compute
�I(1)� = sup |g(t)|. Hence M = sup |g(t)| is the smallest constant we can use.

b) Show that the map I : C → C is uniformly continuous.
Solution: Let � > 0 be given, and let the corresponding δ > 0 be δ = �/M . Then

�I(f)− I(g)� ≤ M �f − g� < M · �/M = �

whenever �f − g� < δ,

c) Show that for any bounded subset A⊆C the set I(A)⊆C is equicontinuous.
Solution: Let K be a bound for A, that is �f� ≤ K for all f ∈ A. We have

|I(f)(x)− I(f)(y)| =

����
� x

y

f(t)g(t) dt

���� ≤
� x

y

|f(t)g(t)| dt ≤ |x− y|KM

for f ∈ A. Then, given � > 0, we put δ = �/KM , and obtain

|I(f)(x)− I(f)(y)| ≤ |x− y|KM ≤ �/KM · KM = �

once |x− y| < δ, and this holds for all f ∈ A.
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d) Show that the closure I(A) is a compact subset.

Solution: We want to apply the Arzela-Ascoli theorem. Now I(A) is equicontinuous
since I(A) is; indeed, if � > 0 is given, choose δ > 0 such that |I(g)(x)− I(g)(y)| < �/3
for all g ∈ A and for all |x− y| < δ. Pick an element F ∈ I(A) and let I(fn) be a
sequence converging (uniformly) to F . We have

|F (x)− F (y)| ≤ |F (x)− I(fn)(x)| + |I(fn)(x)− I(fn)(y)| + |I(fn)(y)− F (y)|

Let � > 0 be given. Choose N such that n > N gives |F (x)− I(fn)(x)| < �/3 for all x.
Then we get by the above inequality.

|F (x)− F (y)| < �.

Too see that I(A) is bounded, use that the norm is continuous, hence if I(fn) converges
to F , then �F� = limn→∞ �fn� < KM . It follows from the A&A theorem, that I(A)
is compact. (It is closed by definition).

e) For each real number λ �= 0, let Vλ = {f ∈ C : I(f) = λf}. Show that Vλ is a
subvector space of C. Determine all functions in Vλ.
Solution: It is clear that Vλ is a sub vector space (closed under addition and scalar
multiplication). An element f lies in Vλ if

� x

0 f(t)g(t) dt = λf . The left side of this
equation is differentiable (integrals of continuous functions are) hence f is differentiable,
and λf � = fg. This is a first order differential equation with solution f(x) = Ce

1
λ

R x
0 g(t) dt

if λ �= 0, but since λf(x) =
� x

0 f(t)g(t) dt, we see that f(0) = 0, hence C = 0, and
f ≡ 0; meaning that Vλ = 0. If λ = 0, it is a little more complicated. Then we get
f(x)g(x) ≡ 0, hence V0 is the subspace {f : f(x)g(x) ≡ 0}; and if e.g., g is positive,
we get f ≡ 0.

Problem 3.

Let F (x) be a strictly increasing function. For any half open interval I = (a, b ] define
m(I) = F (b)− F (a), and for any set E⊆R, let

ν∗(E) = inf{
�

I∈A

m(I) : A}

where A runs through all countable coverings of E by half open intervals (a, b ].

a) Show that ν∗(E) ≥ 0, and that ν∗ is monotone; i.e., ν∗(E �) ≤ ν∗(E) whenever
E �⊆E.
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Solution: Since F is increasing, m(I) = F (b) − F (a) > 0. Hence ν∗(E) ≥ 0, ν∗(E)
being the supremum of a set of positive numbers. If E �⊆E, then any covering of E
(of the type we use) is also a covering of E � (of the type we use). Hence ν∗(E �) is the
supremum of a smaller set than ν∗(E), so ν∗(E �) ≤ ν∗(E).

b) Show that ν∗ is semiadditive; that is

ν∗(
∞�

n=1

En) ≤
∞�

n=1

ν∗(En)

for any family {En} of subsets of R.
Solution: This is word by word the same proof as of Proposition 5.1.4 page 146
in Tom’s notes. Take a look at that.

c) If x ∈ R, show that ν∗({x}) = F (x)− F (x−), and hence ν∗{x} = 0 if and only if F
is continuous from the left at x.
Solution: The sequence F (x− 1/n), where n ∈ N, is increasing with F (x−) as limit,
hence F (x−1/n) ≤ F (x−) for all n. Any half open interval (a, b] containing x contains
an interval of the form (x− 1/n, x] where n ∈ N. Hence

m(I) = F (b)− F (a) ≥ F (x)− F (x− 1/n) ≥ F (x)− F (x−)

This shows that ν∗({x}) ≥ F (x) − F (x−). On the other hand, ν∗({x}) ≤
m((x− 1/n, x]) = F (x)− F (x− 1/n) for all n, hence ν∗({x}) ≤ infn∈N{F (x)− F (x−
1/n)} = F (x) − F (x−); and thus ν∗({x}) = F (x) − F (x−). The function F is conti-
nuous from the left at x if and only if F (x−) = F (x) , hence if and only if ν∗{x} = 0 ,
by what we just saw.
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