MAT2400 Assignment 2 - Solutions

Notation: For any function f of one real variable, $f\left(a^{+}\right)$denotes the limit of $f(x)$ when x tends to a from above (if it exists); i.e., $f\left(a^{+}\right)=\lim _{t \rightarrow a^{+}} f(t)$. Similarly, $f\left(a^{-}\right)$ denotes the limit of $f(x)$ when x tends to a from below (if it exists).

Problem 1.

The aim of this problem is to study a phenomenon which is called Gibb's phenomenon. At every simple jump discontinuity of a function f, the partial sums of the Fourier series of f "overshoots" near the singularity by an amount about 9% of the "jump" of the function.

To be presise, assume that $f(x)$ has a jump singularity at a; i.e., $d=f\left(a^{+}\right)-$ $f\left(a^{-}\right) \neq 0$ and is continuous elsewhere in a neighbourhood of a. For simplicity we assume that $d>0$. We let $s_{n}(x)$ be the n-th partial sum of the Fourier series of f. Then there is a sequence $\left\{x_{n}\right\}$ tending to a from above such that $s_{n}\left(x_{n}\right)>f\left(a^{+}\right)+\alpha d$, where the constant α satisfies $\alpha \approx 0.089$, i.e., about 9%. There is a similar sequence $\left\{y_{n}\right\}$ tending to a from below with $s_{n}\left(y_{n}\right)<f\left(a^{-}\right)-\alpha d$

In this this problem we will study Gibbs phenomenon for the particular function given in $(-\pi, \pi)$ by:

$$
d(x)= \begin{cases}\pi / 2 & \text { if } 0<x<\pi \\ 0 & \text { if } x=0 \\ -\pi / 2 & \text { if }-\pi<x<0\end{cases}
$$

a) Compute the Fourier coefficients of d, and show that we have the equality

$$
d(x)=2 \sum_{k=1}^{\infty} \frac{\sin (2 k-1) x}{2 k-1}
$$

for all $x \in(-\pi, \pi)$.

Solution: The function is odd, so its Fourier series is a pure sine-series, and we need only compute

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} d(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{\pi}{2} \sin n x d x=\left.\right|_{0} ^{\pi} \frac{1}{n}(-\cos n x)=\frac{\left(1-(-1)^{n}\right)}{n},
$$

which equals 0 if n is even and $\frac{2}{n}$ if n is odd. This gives that the Fourier series of $d(x)$ is

$$
2 \sum_{k=1}^{\infty} \frac{\sin (2 k-1) x}{2 k-1}
$$

Clearly the function $d(x)$ has one-sided derivatives everywhere, hence by Dini's test (or one of the corollaries, Corollary 14.12.4 in Tom's) the Fourier series converges to $\left(d\left(x^{+}\right)+d\left(x^{-}\right)\right) / 2$ for every x, but this equals $d(x)$ for all x.
b) Let the partial sums of the Fourier series of $d(x)$ be denoted by $d_{n}(x)$. Show that we have

$$
d_{n}(x)=2 \sum_{k=1}^{n} \frac{\sin (2 k-1) x}{2 k-1}=\int_{0}^{x} \frac{\sin 2 n t}{\sin t} d t .
$$

Hint: Compute the derivative of $d_{n}(x)$ and use that $2 \sum_{k=1}^{n} \cos (2 k-1) x=\frac{\sin 2 n x}{\sin x}$. To prove the last formula, use the for us now well used and classical formula $2 \sin \alpha \cos \beta=$ $\sin (\beta+\alpha)-\sin (\beta-\alpha)$.
Solution:

$$
2 \sum_{k=1}^{n} \cos (2 k-1) x=\frac{1}{\sin x} \sum_{k=1}^{n}(\sin 2 k x-\sin 2(k-1) x)=\frac{\sin 2 n x}{\sin x}
$$

for $x \neq 0, \pi$ or $-\pi$ (use the formula in the hint repeatedly with $\beta=(2 k-1) x$ and $\alpha=x$), and, in fact, if we interpret the right side as the appropriate limit $\lim \frac{\sin 2 n x}{\sin x}$, it holds as well for $x= \pm \pi$ (both sides are zero) and for 0 (both sides are $2 n$). Computing the derivative of $d_{n}(x)$ term by term, we get

$$
d_{n}^{\prime}(x)=2 \sum_{k=1}^{n} \cos (2 k-1) x,
$$

and integrating, we obtain

$$
d_{n}(x)=\int_{0}^{x} \frac{\sin 2 n x}{\sin x} .
$$

c) Show that for $t \geq 0$ the following inequality holds true

$$
0 \leq t-\sin t \leq t^{3} / 6
$$

Use that inequality to prove that

$$
\left|\frac{1}{\sin t}-\frac{1}{t}\right| \leq \frac{\pi}{12} t
$$

when $0<t \leq \pi / 2$.
Solution: It is classical that $\sin t \leq t$ for all $t \geq 0$. To show the other inequality we let

$$
f(x)=t-\sin t-t^{3} / 3!
$$

and compute $f^{\prime}(t)=1-\cos t-t^{2} / 2$ and $f^{\prime \prime}(t)=\sin t-t$ which is negative for $t>0$. Hence $f^{\prime}(t)<0$ for $t>0$ since $f^{\prime}(0)=0$. It follows that $f(t)<0$ for $t>0$ since $f(0)=0$. We know that $\frac{2 t}{\pi} \leq \sin t$ for $0 \leq t \pi / 2$, so we get

$$
\left|\frac{1}{\sin t}-\frac{1}{t}\right|=\left|\frac{t-\sin t}{t \sin t}\right| \leq \frac{\pi}{2 t^{2}} \cdot t^{3} / 6=\frac{\pi}{12} t
$$

d) Prove that for all n and all $0<x<\pi / 2$:

$$
\left|d_{n}(x)-\int_{0}^{2 n x} \frac{\sin u}{u} d u\right|<\frac{\pi}{24} x^{2}
$$

and use this to prove that for a given $\epsilon>0$ there is an n_{0} such that if $n \geq n_{0}$, then

$$
d_{n}(\pi / 2 n)>\pi / 2+\alpha \pi-\epsilon
$$

where the constant α is given by $\alpha=\pi^{-1}\left(\int_{0}^{\pi} \frac{\sin u}{u} d u-\pi / 2\right)$. Hence

$$
d_{n}(\pi / 2 n) \geq \pi / 2+0.089 \pi
$$

because one may compute $\alpha=0.08949 \ldots$. (You can consider that value as given!).

Solution: Integrating the inequality in d), we get

$$
\left|\int_{0}^{x} \frac{\sin 2 n t}{\sin t} d t-\int_{0}^{x} \frac{\sin 2 n t}{t} d t\right| \leq \int_{0}^{x} \frac{\pi t}{12}=\frac{\pi}{24} x^{2}
$$

Substituting $u=2 n t$ in the second integral and using xxx, we get

$$
\left|d_{n}(x)-\int_{0}^{2 n x} \frac{\sin u}{u} d u\right| \leq \frac{\pi}{24} x^{2} .
$$

Now, we put $x=\pi / 2 n$ in the formula above to get

$$
d_{n}(\pi / 2 n) \geq \int_{0}^{\pi} \frac{\sin u}{u} d u-\frac{\pi^{3}}{96} n^{-2}>\pi / 2+\alpha \pi-\epsilon
$$

once n is so big that $\frac{\pi^{3}}{96} n^{-2}<\epsilon$.

Problem 2.

Let $C=C([0,1], \mathbb{R})$ be the Banach space of continuous real valued functions on the interval $[0,1]$ with norm given by $\|f\|=\sup \{|f(x)|: x \in[0,1]\}$. Fix an element $g \in C$, and let $I: C \rightarrow C$ be the map given by

$$
I(f)(x)=\int_{0}^{x} f(t) g(t) d t
$$

a) Show that I is a bounded linear map; that is, I is linear and there is a positive constant M such that $\|I(f)\| \leq M\|f\|$ for all $f \in C$. Determine the least such constant if g is a positive function.

Solution: I is linear by wellknown properties of the integral (in fact linearity). To see that I is bounded, we compute

$$
\begin{aligned}
|I(f)(x)| & =\left|\int_{0}^{x} f(t) g(t) d t\right| \leq \int_{0}^{x}|f(t) g(t)| d t \leq \\
& \leq \int_{0}^{1}|f(t) g(t)| d t \leq \sup |f(t) g(t)| \\
& \leq \sup |f(t)| \sup |g(t)|=\|f\| M
\end{aligned}
$$

where $M=\sup |g(t)|$. Hence $\|I(f)\| \leq\|f\| M$. If the function g is positive, we compute $\|I(1)\|=\sup |g(t)|$. Hence $M=\sup |g(t)|$ is the smallest constant we can use.
b) Show that the map $I: C \rightarrow C$ is uniformly continuous.

Solution: Let $\epsilon>0$ be given, and let the corresponding $\delta>0$ be $\delta=\epsilon / M$. Then

$$
\|I(f)-I(g)\| \leq M\|f-g\|<M \cdot \epsilon / M=\epsilon
$$

whenever $\|f-g\|<\delta$,
c) Show that for any bounded subset $A \subseteq C$ the set $I(A) \subseteq C$ is equicontinuous. Solution: Let K be a bound for A, that is $\|f\| \leq K$ for all $f \in A$. We have

$$
|I(f)(x)-I(f)(y)|=\left|\int_{y}^{x} f(t) g(t) d t\right| \leq \int_{y}^{x}|f(t) g(t)| d t \leq|x-y| K M
$$

for $f \in A$. Then, given $\epsilon>0$, we put $\delta=\epsilon / K M$, and obtain

$$
|I(f)(x)-I(f)(y)| \leq|x-y| K M \leq \epsilon / K M \cdot K M=\epsilon
$$

once $|x-y|<\delta$, and this holds for all $f \in A$.
d) Show that the closure $\overline{I(A)}$ is a compact subset.

Solution: We want to apply the Arzela-Ascoli theorem. Now $\overline{I(A)}$ is equicontinuous since $I(A)$ is; indeed, if $\epsilon>0$ is given, choose $\delta>0$ such that $|I(g)(x)-I(g)(y)|<\epsilon / 3$ for all $g \in A$ and for all $|x-y|<\delta$. Pick an element $F \in \overline{I(A)}$ and let $I\left(f_{n}\right)$ be a sequence converging (uniformly) to F. We have

$$
|F(x)-F(y)| \leq\left|F(x)-I\left(f_{n}\right)(x)\right|+\left|I\left(f_{n}\right)(x)-I\left(f_{n}\right)(y)\right|+\left|I\left(f_{n}\right)(y)-F(y)\right|
$$

Let $\epsilon>0$ be given. Choose N such that $n>N$ gives $\left|F(x)-I\left(f_{n}\right)(x)\right|<\epsilon / 3$ for all x. Then we get by the above inequality.

$$
|F(x)-F(y)|<\epsilon
$$

Too see that $\overline{I(A)}$ is bounded, use that the norm is continuous, hence if $I\left(f_{n}\right)$ converges to F, then $\|F\|=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|<K M$. It follows from the A\&A theorem, that $\overline{I(A)}$ is compact. (It is closed by definition).
e) For each real number $\lambda \neq 0$, let $V_{\lambda}=\{f \in C: I(f)=\lambda f\}$. Show that V_{λ} is a subvector space of C. Determine all functions in V_{λ}.
Solution: It is clear that V_{λ} is a sub vector space (closed under addition and scalar multiplication). An element f lies in V_{λ} if $\int_{0}^{x} f(t) g(t) d t=\lambda f$. The left side of this equation is differentiable (integrals of continuous functions are) hence f is differentiable, and $\lambda f^{\prime}=f g$. This is a first order differential equation with solution $f(x)=C e^{\frac{1}{\lambda} \int_{0}^{x} g(t) d t}$ if $\lambda \neq 0$, but since $\lambda f(x)=\int_{0}^{x} f(t) g(t) d t$, we see that $f(0)=0$, hence $C=0$, and $f \equiv 0$; meaning that $V_{\lambda}=0$. If $\lambda=0$, it is a little more complicated. Then we get $f(x) g(x) \equiv 0$, hence V_{0} is the subspace $\{f: f(x) g(x) \equiv 0\}$; and if e.g., g is positive, we get $f \equiv 0$.

Problem 3.

Let $F(x)$ be a strictly increasing function. For any half open interval $I=(a, b]$ define $m(I)=F(b)-F(a)$, and for any set $E \subseteq \mathbb{R}$, let

$$
\nu^{*}(E)=\inf \left\{\sum_{I \in \mathcal{A}} m(I): \mathcal{A}\right\}
$$

where \mathcal{A} runs through all countable coverings of E by half open intervals $(a, b]$.
a) Show that $\nu^{*}(E) \geq 0$, and that ν^{*} is monotone; i.e., $\nu^{*}\left(E^{\prime}\right) \leq \nu^{*}(E)$ whenever $E^{\prime} \subseteq E$.

Solution: Since F is increasing, $m(I)=F(b)-F(a)>0$. Hence $\nu^{*}(E) \geq 0, \nu^{*}(E)$ being the supremum of a set of positive numbers. If $E^{\prime} \subseteq E$, then any covering of E (of the type we use) is also a covering of E^{\prime} (of the type we use). Hence $\nu^{*}\left(E^{\prime}\right)$ is the supremum of a smaller set than $\nu^{*}(E)$, so $\nu^{*}\left(E^{\prime}\right) \leq \nu^{*}(E)$.
b) Show that ν^{*} is semiadditive; that is

$$
\nu^{*}\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \nu^{*}\left(E_{n}\right)
$$

for any family $\left\{E_{n}\right\}$ of subsets of \mathbb{R}.
Solution: This is word by word the same proof as of Proposition 5.1.4 page 146 in Tom's notes. Take a look at that.
c) If $x \in \mathbb{R}$, show that $\nu^{*}(\{x\})=F(x)-F\left(x^{-}\right)$, and hence $\nu^{*}\{x\}=0$ if and only if F is continuous from the left at x.
Solution: The sequence $F(x-1 / n)$, where $n \in \mathbb{N}$, is increasing with $F\left(x^{-}\right)$as limit, hence $F(x-1 / n) \leq F\left(x^{-}\right)$for all n. Any half open interval ($\left.a, b\right]$ containing x contains an interval of the form $(x-1 / n, x]$ where $n \in \mathbb{N}$. Hence

$$
m(I)=F(b)-F(a) \geq F(x)-F(x-1 / n) \geq F(x)-F\left(x^{-}\right)
$$

This shows that $\nu^{*}(\{x\}) \geq F(x)-F\left(x^{-}\right)$. On the other hand, $\nu^{*}(\{x\}) \leq$ $m((x-1 / n, x])=F(x)-F(x-1 / n)$ for all n, hence $\nu^{*}(\{x\}) \leq \inf _{n \in \mathbb{N}}\{F(x)-F(x-$ $1 / n)\}=F(x)-F\left(x^{-}\right)$; and thus $\nu^{*}(\{x\})=F(x)-F\left(x^{-}\right)$. The function F is continuous from the left at x if and only if $F\left(x^{-}\right)=F(x)$, hence if and only if $\nu^{*}\{x\}=0$, by what we just saw.

