Trial Exam - MAT2400 spring 2012

Problem 1. In this problem $f_{n}(x)=\arctan n x$ for each natural number n and a denotes a positive real number; i.e., $a>0$.
a) Show that each of the functions f_{n} is uniformly continuous on $(0, \infty)$?
b) Show that the sequence $\left\{f_{n}\right\}$ converges uniformly on (a, ∞). Is the convergence uniform on $[0, \infty)$? Hint: It may be helpful to first show that $\frac{\pi}{2}-\arctan x$ is a decreasing function for $x>0$.

Problem 2.
a) La $f(x): \mathbb{R} \rightarrow \mathbb{R}$ be defined on $[-\pi, \pi]$ by

$$
f(x)= \begin{cases}x & \text { when } x \in(-\pi, \pi) \\ 0 & \text { when } x= \pm \pi\end{cases}
$$

and then extended by peridiocity. Show that the Fourier series of f is

$$
2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n x .
$$

For which numbers x does the Fourier series converge to $f(x)$? Is the convergence uniform on $[-\pi, \pi]$?
b) Use 2.a) to show that

$$
x^{2} / 2=\frac{\pi^{2}}{6}+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x
$$

for $x \in(-\pi, \pi)$. What are the values of the sum for $x= \pm \pi$? Is the convergence uniform on $[-\pi, \pi]$?
c) Determine the sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}} .
$$

Problem 3.

a) What does it mean that a function $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ is measurable?
b) Let $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ be a sequence of measurable functions. Show that the function $g(x)=\sup _{n \in \mathbb{N}} f(x)$ is measurable.
c) Show that if f and g are two measurable functions, then their sum $f+g$ is measurable.

Problem 4. In this problem a denotes a positive real constant. For every natural number n, we let $U_{n}=\left(-a-\frac{1}{n}, a+\frac{1}{n}\right)$, and we let $U_{0}=\mathbb{R}$.
a) Show that U_{n} is a decreasing sequence of open sets whose intersection is the interval $I=[-a, a]$.
b) Let $f(x)$ be the following function:

$$
f(x)= \begin{cases}0 & x \in I \\ \frac{1}{n+1} & x \in \mathbb{Q} \cap\left(U_{n} \backslash U_{n+1}\right), n \geq 0 \\ -\frac{1}{n+1} & x \in \mathbb{Q}^{c} \cap\left(U_{n} \backslash U_{n+1}\right), n \geq 0 .\end{cases}
$$

where \mathbb{Q} as usual denortes the set of rational numbers. Explain why f is a well defined function on \mathbb{R}, and show that f is continuous at every point in I.
c) Show that f is not continuous at points $x \notin I$.
d) Show that f is measurable. Is f integrable over $[-1,1]$?

