Trial Exam — MAT2400 spring 2012

PROBLEM 1. In this problem $f_n(x) = \arctan nx$ for each natural number n and a denotes a positive real number; *i.e.*, a > 0.

a) Show that each of the functions f_n is uniformly continuous on $(0, \infty)$?

b) Show that the sequence $\{f_n\}$ converges uniformly on (a, ∞) . Is the convergence uniform on $[0, \infty)$? HINT: It may be helpful to first show that $\frac{\pi}{2}$ – arctan x is a decreasing function for x > 0.

Problem 2.

a) La $f(x) \colon \mathbb{R} \to \mathbb{R}$ be defined on $[-\pi, \pi]$ by

$$f(x) = \begin{cases} x & \text{when } x \in (-\pi, \pi) \\ 0 & \text{when } x = \pm \pi \end{cases}$$

and then extended by peridiocity. Show that the Fourier series of f is

$$2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx.$$

For which numbers x does the Fourier series converge to f(x)? Is the convergence uniform on $[-\pi, \pi]$?

b) Use 2.a) to show that

$$x^{2}/2 = \frac{\pi^{2}}{6} + 2\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$

for $x \in (-\pi, \pi)$. What are the values of the sum for $x = \pm \pi$? Is the convergence uniform on $[-\pi, \pi]$?

c) Determine the sum

$$\sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Problem 3.

a) What does it mean that a function $f \colon \mathbb{R} \to \overline{\mathbb{R}}$ is measurable?

b) Let $\{f_n(x)\}_{n\in\mathbb{N}}$ be a sequence of measurable functions. Show that the function $g(x) = \sup_{n\in\mathbb{N}} f(x)$ is measurable.

c) Show that if f and g are two measurable functions, then their sum f + g is measurable.

PROBLEM 4. In this problem a denotes a positive real constant. For every natural number n, we let $U_n = (-a - \frac{1}{n}, a + \frac{1}{n})$, and we let $U_0 = \mathbb{R}$.

a) Show that U_n is a decreasing sequence of open sets whose intersection is the interval I = [-a, a].

b) Let f(x) be the following function:

$$f(x) = \begin{cases} 0 & x \in I \\ \frac{1}{n+1} & x \in \mathbb{Q} \cap (U_n \setminus U_{n+1}), n \ge 0 \\ -\frac{1}{n+1} & x \in \mathbb{Q}^c \cap (U_n \setminus U_{n+1}), n \ge 0. \end{cases}$$

where \mathbb{Q} as usual denortes the set of rational numbers. Explain why f is a well defined function on \mathbb{R} , and show that f is continuous at every point in I.

c) Show that f is not continuous at points $x \notin I$.

d) Show that f is measurable. Is f integrable over [-1, 1]?

Versjon: Thursday, May 24, 2012 1:26:05 PM