
Exam MAT2400 Spring 2012 — Solutions

Problem 1:

a) We want to apply the mean value theorem to gn(x), and to that end, we compute
the derivative of gn(x). We find

g�n(x) = − 2n

(1 + nx)3
.

The mean value theorem applied to gn over the interval [x, y]⊆ [1,∞) then gives us

|gn(x)− gn(y)| =
2n

(1 + nc)3
|x− y| ≤ 2n

(1 + n)3
|x− y| ≤ 2

n2
|x− y| (❄)

where c is a number beteween x and y — in particular c ≥ 1. So, for any � > 0, if
δ ≤ n2

2 �, we get from (❄) that

|gn(x)− gn(y)| ≤ 2

n2
|x− y| ≤ 2

n2
δ ≤ �

when |x− y| ≤ δ. And this is true for all x and y in [1,∞), hence gn is uniformly
continuous.

The functions gn(x) are all uniformly continuous on [0, 1] since every continuous
function on a compact set is uniformly continuous.

b) One has limn→∞ gn(x) = limn→∞
1

(1+nx)2 = 0 when x > 0. Furthermore, since x ≥ 1,

����
1

(1 + nx)2

���� ≤
1

(1 + n)2
≤ 1

n2
,

which shows that the convergence is uniform. Indeed, 1
n2 tends to 0 when n tends to

∞, and of course 1
n2 is independent of x.

The sequence {gn} does not converge uniformly on [0, 1]. The limit is not continuous,
being 0 if x > 0 and 1 if x = 0, whereas all the functions gn in the sequence are. ❏

Problem 2:

a) The function f is even (i.e., f(−x) = f(x)) so its Fourier series is a pure cosine
series. We compute the coefficients. If n > 0, they are given by

an =
1

π

� π

−π

f(x) cos nx dx =
2

π

� a

0

cos nx dx =
2

π

����
a

0

1

n
sin nx =

2

nπ
sin na,
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and if n = 0,

a0 =
1

2π

� a

−a

dx =
a

π
.

This gives the Fourier series of f :

a

π
+

2

π

∞�

n=1

sin na cos nx

n
.

Or, if you prefere to do it in the complex way:

cn =
1

2π

� π

−π

f(x)e−inx dx =
1

2π

� a

−a

e−inx dx =
1

2π(−in)

����
a

−a

e−inx =

=
1

nπ
· eina − e−ina

2i
=

1

nπ
sin na,

where n �= 0. The constant term, c0, is the same as above, i.e., c0 = a0 = a
π . Grouping

the terms corresponding to n amd −n together, and using that sin(−na) = − sin na,
we find that the Fourier series of f(x) is:

a

π
+

∞�

n=−∞,n�=0

cne
inx =

a

π
+

∞�

n=1

1

nπ
sin na(einx + e−inx) =

a

π
+

∞�

n=1

2

nπ
sin na cos nx.

b) The function f being picewise constant clearly has one-sided derivatives everywhere,
hence converges to (f(x+) + f(x−))/2 for all x by Dini’s test (or more presicely its
second corollary in Tom’s notes). Setting x = a and using that 2 sin α cos α = sin 2α,
we therefore get

1

2
=

a

π
+

2

π

∞�

n=1

sin na cos na

n
=

a

π
+

1

π

∞�

n=1

sin 2na

n
,

and from this we conclude that

π

2
− a =

∞�

n=1

sin 2na

n
.

c) Integrating the series in 2a) term by term from 0 to x, we obtain:

ax

π
+

2

π

∞�

n=1

sin na sin nx

n2
. (❅)
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We are in this case allowed to swich the order in which we perform the summation
and the integration (justified either by the theorem in Tom’s notes which states that
this is indeed true for all integrated Fourier series, or by observing that our series
(❅) converges uniformly by Weierstrass’ M -test), so the series (❅) converges to the
following function:

g1(x) =

� x

0

f(t) dt =






a x ∈ (a, π]

x x ∈ [−a, a]

−a x ∈ [−π,−a),

which gives that the series in the problem converges to g1(x)− ax
π , i.e., the function

g(x) =






a(1− x
π ) x ∈ (a, π]

x(1− a
π ) x ∈ (−a, a)

−a(1 + x
π ) x ∈ [−π,−a).

❏

Problem 3:

a) Let f+ = max{f, 0} and f− = max{−f, 0}. If f is measurable, these two functions
are both measurable. We say that f is integrable if it is measurable and both the
non-negative functions f+ and f− are integrable, that is if both

�
f+ dµ < ∞ and�

f− dµ < ∞.

b) Let E = {x : f(x) = ∞} = {x : f+(x) = ∞}. We have
�

E f+ dµ ≤
�

f+ dµ, and if
µ(E) > 0 then

�
E f+ dµ = ∞ · µ(E) = ∞, so f is not integrable. The second part of

the problem follows in a similar way (e.g., by considering the integrable function −f
and noting that (−f)+ = f−).

c) Aiming for a contradiction, we assume that f is not zero almost everywhere. That
means that at leat one of the sets E = {x : f(x) > 0} and E � = {x : f(x) < 0} are
of positive measure (indeed, {x : f(x) �= 0} = E ∪ E �), and we may without loss of
generality assume that µ(E) > 0 (if not, replace f by −f).

Let En = {x : f(x) ≥ 1
n}. Then {En} is an increasing sequence of measurable

sets satisfying E =
�∞

n=1 En. Hence µ(E) = limn→∞ µ(En), and since µ(E) > 0, we

get µ(En) > 0 for n big. Then, for such an n, we get 0 < µ(En)
n ≤

�
En

f dµ which
contradicts the fact that

�
En

f dµ = 0. ❏

Problem 4:
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a) Let x ∈ U� be given, and let δ be such that if |x− s| < δ and |x− t| < δ, then
|f(s)− f(t)| < �.

It suffices to show that if |h| < δ/2, then x + h ∈ U�. To this end, assume that
|x + h− s| < δ/2 and |x + h− t| < δ/2. Then

|x− s| ≤ |x + h− s| + |h| < δ/2 + δ/2 = δ

and
|x− t| ≤ |x + h− t| + |h| < δ/2 + δ/2 = δ.

Hence by the definition of U�, we get |f(s)− f(t)| < � because x ∈ U�. It follows that
x + h ∈ U�.

b) Let x ∈
�

n∈N U 1
n

and let � > 0 be given. Pick a natural number N such that
1
N < �. Since x ∈ U 1

N
there is a δ > 0 such that the two inequalities |x− s| < δ and

|x− t| < δ imply that |f(s)− f(t)| < 1
N < �. In particular, we my take s = x and get

|f(x)− f(t)| < � whenever |x− t| < δ. Hence f is continuous at x.

Assume that f is continuous at x. There is δ > 0 with |f(x)− f(t)| < �/2 once
|x− y| < δ. Then if |x− s| < δ and |x− t| < δ we have

|f(s)− f(t)| ≤ |f(x)− f(s)| + |f(x)− f(t)| ≤ �/2 + �/2 = �.

This shows that x ∈ U� for any � > 0, in particular x ∈ U 1
n

for all n ∈ N.

c) Let x ∈ A and � > 0 be given. There is an N such that
��3−N

�� < �; then if y ∈ Un

for n ≥ N , we have
|f(x)− f(y)| =

��3−n(y)
�� ≤

��3−N
�� < �,

and we are through since Un is open.

d) Let x �∈ A and assume that f is continuous in x. Let � = 1
2 · 3−n(x). By continuity of

f there is an open set V containing x such that if y ∈ V then |f(x)− f(y)| < 1
2 ·3−n(x).

Then |f(y)| > |f(x)| − 1
2 · 3−n(x) = 1

2 · 3−n(x) > 3−(n(x)+1), and it follows from this
that V ∩ Un(x)⊆Un(x) \ Un(x)+1.

Since both Q and Qc are dense in R, there are points both in Q∩ V ∩Un(x) and in
Qc ∩ V ∩ Un(x).

If x ∈ Q, pick z ∈ Qc∩V ∩Un(x). Then f(z) = −3−n(x), and f(x)−f(z) = 2 ·3−n(x).
If x ∈ Qc, a z ∈ Q ∩ V ∩ Un(x) will do the job: f(x)− f(z) = −2 · 3−n(x).

In both cases |f(x)− f(z)| = 2 · 3−n(x) > 1
2 · 3−n(x) = � — a contradiction. ❏
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