Problem 1

a

Assume Y is complete and that x_{n} is a Cauchy sequence in X. Since ϕ is an isometry, $y_{n}=\phi\left(x_{n}\right)$ is also a Cauchy sequence. Moreover, since Y is complete, there is then a $y \in Y$ such that $y_{n} \rightarrow y$. Let $x=\psi(y)$ and note that $y=\phi(x)$, so

$$
d_{X}\left(x_{n}, x\right)=d_{Y}\left(\phi\left(x_{n}\right), \phi(x)\right)=d_{Y}\left(y_{n}, y\right) .
$$

As $y_{n} \rightarrow y$ we see that $x_{n} \rightarrow x$. Hence x_{n} converges, so X is complete.
To prove that Y is complete if X is complete just switch the places of X and Y and ϕ and ψ in the argument above, and note that ψ is an isometry since

$$
d_{X}\left(\psi\left(y^{\prime}\right), \psi\left(y^{\prime \prime}\right)\right)=d_{Y}\left(\phi \circ \psi\left(y^{\prime}\right), \phi \circ \psi\left(y^{\prime \prime}\right)\right)=d_{Y}\left(y^{\prime}, y^{\prime \prime}\right)
$$

b

We have to check positive definiteness, symmetry and the triangle inequality. For positivity, note that $|x-y| \geq 0$ and $\left|\frac{1}{x}-\frac{1}{y}\right| \geq 0$, so $d(x, y) \geq 0$. If $d(x, y)=0$ then in particular $|x-y|=0$, so $x=y$. Hence d is definite.

For symmetry, note that

$$
d(x, y)=|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|=|y-x|+\left|\frac{1}{y}-\frac{1}{x}\right|=d(y, x) .
$$

For the triangle inequality, given $x, y, z \in \mathbb{R}^{+}$, note that by the usual triangle inequality we get
$d(x, z)=|x-z|+\left|\frac{1}{x}-\frac{1}{z}\right| \leq|x-y|+|y-z|+\left|\frac{1}{x}-\frac{1}{y}\right|+\left|\frac{1}{y}-\frac{1}{z}\right|=d(x, y)+d(y, z)$.
Hence d is a metric.

c

Given $x=\left(x_{1}, \frac{1}{x_{2}}\right), y=\left(y_{1}, \frac{1}{y_{1}}\right) \in X \subset \mathbb{R}^{2}$ we get

$$
e(x, y)=d_{\mathbb{R}^{2}}(x, y)=\left|x_{1}-y_{1}\right|+\left|\frac{1}{x_{1}}-\frac{1}{y_{1}}\right|=d\left(x_{1}, y_{1}\right)=d(\phi(x), \phi(y))
$$

whence ϕ is an isometry. Let $\psi: \mathbb{R}^{+} \rightarrow X$ be given by $\psi(x)=\left(x, \frac{1}{x}\right)$. The map ϕ is a bijection since $\phi \circ \psi(x)=x$ for all $x \in \mathbb{R}^{+}$and $\psi \circ \phi\left(x, \frac{1}{x}\right)=\left(x, \frac{1}{x}\right)$ for all $\left(x, \frac{1}{x}\right) \in X$. By a similar argument as in (a) ψ is an isometry and hence continuous. Thus ψ is a continuous inverse of ϕ, so ϕ is an invertible isometry.

d

Recall that X is a closed subset of \mathbb{R}^{2}, and that \mathbb{R}^{2} is complete. Hence X is complete. By (a), since $\phi: X \rightarrow \mathbb{R}^{2}$ is an invertible isometry, this implies that \mathbb{R}^{+}is complete.

Problem 2

a

Note that $\left|f_{n}(t)\right|=\left|\sin \sqrt{t+n^{2} \pi^{2}}\right| \leq 1$ since $-1 \leq \sin x \leq 1$ for all $x \in \mathbb{R}$. Thus,

$$
\rho\left(f_{1}, f_{n}\right)=\sup _{t}\left|f_{1}(t)-f_{n}(t)\right| \leq \sup _{t}\left|f_{1}(t)\right|+\left|f_{n}(t)\right| \leq 1+1=2
$$

whence $\left\{f_{n}\right\}$ is bounded.
The mean value theorem applied to f_{n} shows us that

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|f_{n}^{\prime}(c)\right| \cdot|x-y|
$$

so we would like to estimate $\left|f_{n}^{\prime}(c)\right|$. Note that

$$
\left|f_{n}^{\prime}(c)\right|=\left|\frac{\cos \sqrt{c+n^{2} \pi^{2}}}{2 \sqrt{c+n^{2} \pi^{2}}}\right| \leq 1
$$

for all n and c.
Hence given any $\epsilon>0$ we can choose $\delta=\epsilon$ to get

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y|<\delta=\epsilon
$$

whenever $|x-y|<\delta$. Hence $\left\{f_{n}\right\}$ is equicontinuous.

b

Extend f_{n} to $[0, \infty)$ by continuity, so that $f_{n}(0)=0$. For $t \in \mathbb{R}^{+}$

$$
\left|f_{n}(t)\right|=\left|f_{n}(t)-f_{n}(0)\right|=\left|f_{n}^{\prime}(c)\right| \cdot|t-0|
$$

Now consider $f_{n}^{\prime}(c)$. We have

$$
\left|f_{n}^{\prime}(c)\right|=\left|\frac{\cos \sqrt{c+n^{2} \pi^{2}}}{2 \sqrt{c+n^{2} \pi^{2}}}\right| \leq \frac{1}{2 \sqrt{c+n^{2} \pi^{2}}} \leq \frac{1}{2 n \pi}
$$

Thus $\left|f_{n}(t)\right| \leq \frac{|t|}{2 n \pi}$, so $f_{n}(t) \rightarrow 0$ as $n \rightarrow \infty$. Hence f_{n} converges pointwise to zero.
On the other hand,

$$
\begin{aligned}
\sup _{t}\left|f_{n}(t)\right| & \geq\left|f_{n}\left((n+1 / 4) \pi^{2}\right)\right|=\left|\sin \sqrt{(n+1 / 4) \pi^{2}+n^{2} \pi^{2}}\right| \\
& =\left|\sin \sqrt{(n+1 / 2)^{2} \pi^{2}}\right|=|\sin (n+1 / 2) \pi|=1,
\end{aligned}
$$

so $\rho\left(f_{n}, 0\right) \geq 1$. Hence f_{n} cannot converge uniformly to zero.

C

Consider the set $\left\{f_{n}\right\} \subset C\left(\mathbb{R}^{+}, \mathbb{R}\right)$. This set is bounded and equicontinuous. By problem (b) the sequence f_{n} does not converge uniformly to the zero function, so the set is closed. If an analogue of the Arzelà-Ascoli theorem should hold this would imply that a subsequence of f_{n} converges. However, such a subsequence could only converge to the zero function, which is impossible. Hence such an analogue cannot hold.

Problem 3

a

Let $z_{n}=\left(x_{n}, y_{n}\right)$ be a sequence in $K \times K$. Then x_{n} is a sequence in K, so has a convergent subsequence, say $x_{n_{k}}$, which converges to some $x \in K$. The corresponding subsequence $y_{n_{k}}$ is again a sequence in K, so has a convergent subsequence, say $y_{n_{k_{l}}}$, which converges to $y \in K$. Then $x_{n_{k_{l}}}$ is a subsequence of the convergent sequence $x_{n_{k}}$, so it converges to the same element x.

Consider the subsequence $z_{n_{k_{l}}}$. We claim that $z_{n} \rightarrow z=(x, y)$. To this end, given $\epsilon>0$, find L_{1} such that $d\left(x_{n_{k_{l}}}, x\right)<\frac{\epsilon}{2}$ for $l \geq L_{1}$ and L_{2} such that $d\left(y_{n_{k_{l}}}, y\right)<\frac{\epsilon}{2}$ for $l \geq L_{2}$, and set $L=\max \left\{L_{1}, L_{2}\right\}$. Then, for $l \geq L$ we have

$$
d\left(z_{n_{k_{l}}}, z\right)=d\left(x_{n_{k_{l}}}, x\right)+d\left(y_{n_{k_{l}}}, y\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Thus z_{n} has a convergent subsequence. Since z_{n} was arbitrary, $K \times K$ is compact.

b

Let $D=\sup \{d(x, y) \mid x, y \in K\}$. By definition of the supremum we can for each n find $x_{n}, y_{n} \in K$ such that $d\left(x_{n}, y_{n}\right)>D-1 / n$. Let $z_{n}=\left(x_{n}, y_{n}\right)$, and find a convergent subsequence $z_{n_{k}}$, which we can do since $K \times K$ is compact. Let $z_{n_{k}} \rightarrow z=$ $\left(x_{0}, y_{0}\right)$. Then $d\left(x_{0}, y_{0}\right)=\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, y_{n_{k}}\right)=D$ since the metric $d: K \times K \rightarrow \mathbb{R}$ is continuous.

Problem 4

a
We first show that I is bounded. To this end, let $f, g \in I$. Then

$$
\rho(f, g)=\sup _{x \in K} d(f(x), g(x)) \leq \sup _{x, y \in K} d(x, y)<\infty,
$$

since we know from (3b) that the diameter of K is finite. Hence I is bounded.

To see that I is closed, assume that f_{n} is a sequence in I converging to some function f. For $x, y \in K$ and any n we then have

$$
\begin{aligned}
|d(f(x), f(y))-d(x, y)|= & \left|d(f(x), f(y))-d\left(f_{n}(x), f_{n}(y)\right)\right| \\
= & \mid d(f(x), f(y))-d\left(f(y), f_{n}(x)\right) \\
& +d\left(f(y), f_{n}(x)\right)-d\left(f_{n}(x), f_{n}(y)\right) \mid \\
= & \mid d(f(x), f(y))-d\left(f(y), f_{n}(x)\right) \\
& +d\left(f(y), f_{n}(x)\right)-d\left(f_{n}(x), f_{n}(y)\right) \\
\leq & \left|d(f(x), f(y))-d\left(f(y), f_{n}(x)\right)\right| \\
& +\left|d\left(f(y), f_{n}(x)\right)-d\left(f_{n}(x), f_{n}(y)\right)\right| \\
\leq & d\left(f(x), f_{n}(x)\right)+d\left(f(y), f_{n}(y)\right) .
\end{aligned}
$$

Here the right-hand side converges to 0 as $n \rightarrow \infty$ while the left-hand side is a nonnegative constant, so it must be zero. Hence we must have $d(f(x), f(y))=d(x, y)$ for all $x, y \in K$, so $f \in I$. Hence I is closed.

b

By (a) the only thing missing is to show that I is equicontinuous.
Given $\epsilon>0$, let $\delta=\epsilon$. For $f \in I$ and $x, y \in K$ with $d(x, y)<\delta$ we then have

$$
d(f(x), f(y))=d(x, y)<\delta=\epsilon
$$

as required. Hence I is equicontinuous.
By the Arzelà-Ascoli theorem I is compact.

