Problem 1

a

Assume Y is complete and that x_n is a Cauchy sequence in X. Since ϕ is an isometry, $y_n = \phi(x_n)$ is also a Cauchy sequence. Moreover, since Y is complete, there is then a $y \in Y$ such that $y_n \to y$. Let $x = \psi(y)$ and note that $y = \phi(x)$, so

$$d_X(x_n, x) = d_Y(\phi(x_n), \phi(x)) = d_Y(y_n, y).$$

As $y_n \to y$ we see that $x_n \to x$. Hence x_n converges, so X is complete.

To prove that Y is complete if X is complete just switch the places of X and Y and ϕ and ψ in the argument above, and note that ψ is an isometry since

$$d_X\big(\psi(y'),\psi(y'')\big) = d_Y\big(\phi\circ\psi(y'),\phi\circ\psi(y'')\big) = d_Y(y',y'').$$

\mathbf{b}

We have to check positive definiteness, symmetry and the triangle inequality. For positivity, note that $|x - y| \ge 0$ and $\left|\frac{1}{x} - \frac{1}{y}\right| \ge 0$, so $d(x, y) \ge 0$. If d(x, y) = 0 then in particular |x - y| = 0, so x = y. Hence d is definite.

For symmetry, note that

$$d(x,y) = |x-y| + \left|\frac{1}{x} - \frac{1}{y}\right| = |y-x| + \left|\frac{1}{y} - \frac{1}{x}\right| = d(y,x).$$

For the triangle inequality, given $x, y, z \in \mathbb{R}^+$, note that by the usual triangle inequality we get

$$d(x,z) = |x-z| + \left|\frac{1}{x} - \frac{1}{z}\right| \le |x-y| + |y-z| + \left|\frac{1}{x} - \frac{1}{y}\right| + \left|\frac{1}{y} - \frac{1}{z}\right| = d(x,y) + d(y,z).$$

Hence d is a metric.

С

Given $x = (x_1, \frac{1}{x_2}), y = (y_1, \frac{1}{y_1}) \in X \subset \mathbb{R}^2$ we get

$$e(x,y) = d_{\mathbb{R}^2}(x,y) = |x_1 - y_1| + \left|\frac{1}{x_1} - \frac{1}{y_1}\right| = d(x_1,y_1) = d(\phi(x),\phi(y)),$$

whence ϕ is an isometry. Let $\psi \colon \mathbb{R}^+ \to X$ be given by $\psi(x) = (x, \frac{1}{x})$. The map ϕ is a bijection since $\phi \circ \psi(x) = x$ for all $x \in \mathbb{R}^+$ and $\psi \circ \phi(x, \frac{1}{x}) = (x, \frac{1}{x})$ for all $(x, \frac{1}{x}) \in X$. By a similar argument as in (a) ψ is an isometry and hence continuous. Thus ψ is a continuous inverse of ϕ , so ϕ is an invertible isometry.

 \mathbf{d}

Recall that X is a closed subset of \mathbb{R}^2 , and that \mathbb{R}^2 is complete. Hence X is complete. By (a), since $\phi: X \to \mathbb{R}^2$ is an invertible isometry, this implies that \mathbb{R}^+ is complete.

Problem 2

а

Note that $|f_n(t)| = |\sin \sqrt{t + n^2 \pi^2}| \le 1$ since $-1 \le \sin x \le 1$ for all $x \in \mathbb{R}$. Thus,

$$\rho(f_1, f_n) = \sup_{t} |f_1(t) - f_n(t)| \le \sup_{t} |f_1(t)| + |f_n(t)| \le 1 + 1 = 2$$

whence $\{f_n\}$ is bounded.

The mean value theorem applied to f_n shows us that

$$|f_n(x) - f_n(y)| = |f'_n(c)| \cdot |x - y|,$$

so we would like to estimate $|f'_n(c)|$. Note that

$$|f'_n(c)| = \left|\frac{\cos\sqrt{c + n^2\pi^2}}{2\sqrt{c + n^2\pi^2}}\right| \le 1$$

for all n and c.

Hence given any $\epsilon > 0$ we can choose $\delta = \epsilon$ to get

 $|f_n(x) - f_n(y)| \le |x - y| < \delta = \epsilon$

whenever $|x - y| < \delta$. Hence $\{f_n\}$ is equicontinuous.

b

Extend f_n to $[0,\infty)$ by continuity, so that $f_n(0) = 0$. For $t \in \mathbb{R}^+$

$$|f_n(t)| = |f_n(t) - f_n(0)| = |f'_n(c)| \cdot |t - 0|.$$

Now consider $f'_n(c)$. We have

$$|f'_n(c)| = \left|\frac{\cos\sqrt{c+n^2\pi^2}}{2\sqrt{c+n^2\pi^2}}\right| \le \frac{1}{2\sqrt{c+n^2\pi^2}} \le \frac{1}{2n\pi}.$$

Thus $|f_n(t)| \leq \frac{|t|}{2n\pi}$, so $f_n(t) \to 0$ as $n \to \infty$. Hence f_n converges pointwise to zero. On the other hand,

$$\sup_{t} |f_n(t)| \ge |f_n((n+1/4)\pi^2)| = |\sin\sqrt{(n+1/4)\pi^2 + n^2\pi^2}|$$
$$= |\sin\sqrt{(n+1/2)^2\pi^2}| = |\sin(n+1/2)\pi| = 1,$$

so $\rho(f_n, 0) \ge 1$. Hence f_n cannot converge uniformly to zero.

Consider the set $\{f_n\} \subset C(\mathbb{R}^+, \mathbb{R})$. This set is bounded and equicontinuous. By problem (b) the sequence f_n does not converge uniformly to the zero function, so the set is closed. If an analogue of the Arzelà-Ascoli theorem should hold this would imply that a subsequence of f_n converges. However, such a subsequence could only converge to the zero function, which is impossible. Hence such an analogue cannot hold.

Problem 3

a

Let $z_n = (x_n, y_n)$ be a sequence in $K \times K$. Then x_n is a sequence in K, so has a convergent subsequence, say x_{n_k} , which converges to some $x \in K$. The corresponding subsequence y_{n_k} is again a sequence in K, so has a convergent subsequence, say $y_{n_{k_l}}$, which converges to $y \in K$. Then $x_{n_{k_l}}$ is a subsequence of the convergent sequence x_{n_k} , so it converges to the same element x.

Consider the subsequence $z_{n_{k_l}}$. We claim that $z_n \to z = (x, y)$. To this end, given $\epsilon > 0$, find L_1 such that $d(x_{n_{k_l}}, x) < \frac{\epsilon}{2}$ for $l \ge L_1$ and L_2 such that $d(y_{n_{k_l}}, y) < \frac{\epsilon}{2}$ for $l \ge L_2$, and set $L = \max\{L_1, L_2\}$. Then, for $l \ge L$ we have

$$d(z_{n_{k_l}},z)=d(x_{n_{k_l}},x)+d(y_{n_{k_l}},y)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

Thus z_n has a convergent subsequence. Since z_n was arbitrary, $K \times K$ is compact.

 \mathbf{b}

Let $D = \sup \{d(x, y) \mid x, y \in K\}$. By definition of the supremum we can for each n find $x_n, y_n \in K$ such that $d(x_n, y_n) > D - 1/n$. Let $z_n = (x_n, y_n)$, and find a convergent subsequence z_{n_k} , which we can do since $K \times K$ is compact. Let $z_{n_k} \to z = (x_0, y_0)$. Then $d(x_0, y_0) = \lim_{k \to \infty} d(x_{n_k}, y_{n_k}) = D$ since the metric $d: K \times K \to \mathbb{R}$ is continuous.

Problem 4

a

We first show that I is bounded. To this end, let $f, g \in I$. Then

$$\rho(f,g) = \sup_{x \in K} d(f(x),g(x)) \le \sup_{x,y \in K} d(x,y) < \infty,$$

since we know from (3b) that the diameter of K is finite. Hence I is bounded.

С

To see that I is closed, assume that f_n is a sequence in I converging to some function f. For $x, y \in K$ and any n we then have

$$\begin{aligned} |d(f(x), f(y)) - d(x, y)| &= |d(f(x), f(y)) - d(f_n(x), f_n(y))| \\ &= |d(f(x), f(y)) - d(f(y), f_n(x)) \\ &+ d(f(y), f_n(x)) - d(f_n(x), f_n(y))| \\ &= |d(f(x), f(y)) - d(f(y), f_n(x)) \\ &+ d(f(y), f_n(x)) - d(f_n(x), f_n(y)) \\ &\leq |d(f(x), f(y)) - d(f(y), f_n(x))| \\ &+ |d(f(y), f_n(x)) - d(f_n(x), f_n(y))| \\ &\leq d(f(x), f_n(x)) + d(f(y), f_n(y)). \end{aligned}$$

Here the right-hand side converges to 0 as $n \to \infty$ while the left-hand side is a nonnegative constant, so it must be zero. Hence we must have d(f(x), f(y)) = d(x, y) for all $x, y \in K$, so $f \in I$. Hence I is closed.

\mathbf{b}

By (a) the only thing missing is to show that I is equicontinuous.

Given $\epsilon > 0$, let $\delta = \epsilon$. For $f \in I$ and $x, y \in K$ with $d(x, y) < \delta$ we then have

 $d(f(x), f(y)) = d(x, y) < \delta = \epsilon,$

as required. Hence I is equicontinuous.

By the Arzelà-Ascoli theorem I is compact.