
Problem 1

a

Assume Y is complete and that xn is a Cauchy sequence in X. Since φ is an isometry,
yn = φ(xn) is also a Cauchy sequence. Moreover, since Y is complete, there is then a
y ∈ Y such that yn → y. Let x = ψ(y) and note that y = φ(x), so

dX(xn, x) = dY
(
φ(xn), φ(x)

)
= dY (yn, y).

As yn → y we see that xn → x. Hence xn converges, so X is complete.
To prove that Y is complete if X is complete just switch the places of X and Y and

φ and ψ in the argument above, and note that ψ is an isometry since

dX
(
ψ(y′), ψ(y′′)

)
= dY

(
φ ◦ ψ(y′), φ ◦ ψ(y′′)

)
= dY (y′, y′′).

b

We have to check positive definiteness, symmetry and the triangle inequality. For
positivity, note that |x− y| ≥ 0 and

∣∣∣ 1x − 1
y

∣∣∣ ≥ 0, so d(x, y) ≥ 0. If d(x, y) = 0 then in
particular |x− y| = 0, so x = y. Hence d is definite.

For symmetry, note that

d(x, y) = |x− y|+
∣∣∣ 1
x
− 1
y

∣∣∣ = |y − x|+
∣∣∣1
y
− 1
x

∣∣∣ = d(y, x).

For the triangle inequality, given x, y, z ∈ R+, note that by the usual triangle in-
equality we get

d(x, z) = |x− z|+
∣∣∣ 1
x
− 1
z

∣∣∣ ≤ |x− y|+ |y − z|+ ∣∣∣ 1
x
− 1
y

∣∣∣+ ∣∣∣1
y
− 1
z

∣∣∣ = d(x, y) + d(y, z).

Hence d is a metric.

c

Given x =
(
x1,

1
x2

)
, y =

(
y1,

1
y1

)
∈ X ⊂ R2 we get

e(x, y) = dR2(x, y) = |x1 − y1|+
∣∣∣ 1
x1
− 1
y1

∣∣∣ = d(x1, y1) = d
(
φ(x), φ(y)

)
,

whence φ is an isometry. Let ψ : R+ → X be given by ψ(x) =
(
x, 1

x

)
. The map φ is a

bijection since φ ◦ψ(x) = x for all x ∈ R+ and ψ ◦φ
(
x, 1

x ) =
(
x, 1

x

)
for all

(
x, 1

x

)
∈ X.

By a similar argument as in (a) ψ is an isometry and hence continuous. Thus ψ is a
continuous inverse of φ, so φ is an invertible isometry.
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d

Recall that X is a closed subset of R2, and that R2 is complete. Hence X is complete.
By (a), since φ : X → R2 is an invertible isometry, this implies that R+ is complete.

Problem 2

a

Note that |fn(t)| = |sin
√
t+ n2π2| ≤ 1 since −1 ≤ sinx ≤ 1 for all x ∈ R. Thus,

ρ(f1, fn) = sup
t
|f1(t)− fn(t)| ≤ sup

t
|f1(t)|+ |fn(t)| ≤ 1 + 1 = 2

whence {fn} is bounded.
The mean value theorem applied to fn shows us that

|fn(x)− fn(y)| = |f ′n(c)| · |x− y|,

so we would like to estimate |f ′n(c)|. Note that

|f ′n(c)| =

∣∣∣∣∣cos
√
c+ n2π2

2
√
c+ n2π2

∣∣∣∣∣ ≤ 1

for all n and c.
Hence given any ε > 0 we can choose δ = ε to get

|fn(x)− fn(y)| ≤ |x− y| < δ = ε

whenever |x− y| < δ. Hence {fn} is equicontinuous.

b

Extend fn to [0,∞) by continuity, so that fn(0) = 0. For t ∈ R+

|fn(t)| = |fn(t)− fn(0)| = |f ′n(c)| · |t− 0|.

Now consider f ′n(c). We have

|f ′n(c)| =

∣∣∣∣∣cos
√
c+ n2π2

2
√
c+ n2π2

∣∣∣∣∣ ≤ 1
2
√
c+ n2π2

≤ 1
2nπ

.

Thus |fn(t)| ≤ |t|
2nπ , so fn(t)→ 0 as n→∞. Hence fn converges pointwise to zero.

On the other hand,

sup
t
|fn(t)| ≥ |fn

(
(n+ 1/4)π2

)
| = |sin

√
(n+ 1/4)π2 + n2π2|

= |sin
√

(n+ 1/2)2π2| = |sin(n+ 1/2)π| = 1,

so ρ(fn, 0) ≥ 1. Hence fn cannot converge uniformly to zero.
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c

Consider the set {fn} ⊂ C(R+,R). This set is bounded and equicontinuous. By
problem (b) the sequence fn does not converge uniformly to the zero function, so the
set is closed. If an analogue of the Arzelà-Ascoli theorem should hold this would imply
that a subsequence of fn converges. However, such a subsequence could only converge
to the zero function, which is impossible. Hence such an analogue cannot hold.

Problem 3

a

Let zn = (xn, yn) be a sequence in K × K. Then xn is a sequence in K, so has a
convergent subsequence, say xnk

, which converges to some x ∈ K. The corresponding
subsequence ynk

is again a sequence in K, so has a convergent subsequence, say ynkl
,

which converges to y ∈ K. Then xnkl
is a subsequence of the convergent sequence xnk

,
so it converges to the same element x.

Consider the subsequence znkl
. We claim that zn → z = (x, y). To this end, given

ε > 0, find L1 such that d(xnkl
, x) < ε

2 for l ≥ L1 and L2 such that d(ynkl
, y) < ε

2 for
l ≥ L2, and set L = max{L1, L2}. Then, for l ≥ L we have

d(znkl
, z) = d(xnkl

, x) + d(ynkl
, y) <

ε

2
+
ε

2
= ε.

Thus zn has a convergent subsequence. Since zn was arbitrary, K ×K is compact.

b

Let D = sup {d(x, y) | x, y ∈ K}. By definition of the supremum we can for each
n find xn, yn ∈ K such that d(xn, yn) > D − 1/n. Let zn = (xn, yn), and find a
convergent subsequence znk

, which we can do since K×K is compact. Let znk
→ z =

(x0, y0). Then d(x0, y0) = limk→∞ d(xnk
, ynk

) = D since the metric d : K ×K → R is
continuous.

Problem 4

a

We first show that I is bounded. To this end, let f, g ∈ I. Then

ρ(f, g) = sup
x∈K

d(f(x), g(x)) ≤ sup
x,y∈K

d(x, y) <∞,

since we know from (3b) that the diameter of K is finite. Hence I is bounded.
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To see that I is closed, assume that fn is a sequence in I converging to some function
f . For x, y ∈ K and any n we then have

|d
(
f(x), f(y)

)
− d(x, y)| = |d

(
f(x), f(y)

)
− d
(
fn(x), fn(y)

)
|

= |d
(
f(x), f(y)

)
− d
(
f(y), fn(x)

)
+ d
(
f(y), fn(x)

)
− d
(
fn(x), fn(y)

)
|

= |d
(
f(x), f(y)

)
− d
(
f(y), fn(x)

)
+ d
(
f(y), fn(x)

)
− d
(
fn(x), fn(y)

)
≤
∣∣d(f(x), f(y)

)
− d
(
f(y), fn(x)

)∣∣
+
∣∣d(f(y), fn(x)

)
− d
(
fn(x), fn(y)

)∣∣
≤ d
(
f(x), fn(x)

)
+ d
(
f(y), fn(y)

)
.

Here the right-hand side converges to 0 as n → ∞ while the left-hand side is a non-
negative constant, so it must be zero. Hence we must have d

(
f(x), f(y)

)
= d(x, y) for

all x, y ∈ K, so f ∈ I. Hence I is closed.

b

By (a) the only thing missing is to show that I is equicontinuous.
Given ε > 0, let δ = ε. For f ∈ I and x, y ∈ K with d(x, y) < δ we then have

d
(
f(x), f(y)

)
= d(x, y) < δ = ε,

as required. Hence I is equicontinuous.
By the Arzelà-Ascoli theorem I is compact.
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