MAT2400: Mandatory assignment #1, Spring 2020 Suggested solution

Problem 1.

FIGURE 1. The balls $B_i(x;r)$ for $i = 1, 2, \infty$. The ball contains everything within the indicated area, but not the boundary.

Problem 2.

(a) Let $x \in \mathbb{R}^2$ and let r > 0. From the hint we know that

 $d_1(x,y) \leqslant \sqrt{2}d_2(x,y)$ and $d_2(x,y) \leqslant d_1(x,y)$ $\forall x,y \in \mathbb{R}^2$. Hence, if $s = \frac{1}{\sqrt{2}}r$ and t = r then for any $y \in \mathbb{R}^2$,

$$d_2(x,y) < s \quad \Rightarrow \quad d_1(x,y) \leqslant \sqrt{2}d_2(x,y) < \sqrt{2}s = r$$

and

$$d_1(x,y) < t \quad \Rightarrow \quad d_2(x,y) \leqslant d_1(x,y) < t = r$$

which means the same as

$$B_2(x;s) \subset B_1(x;r)$$
 and $B_1(x;t) \subset B_2(x;r).$

(b) It is enough to find an open ball in one of the metric space into which we cannot fit an open ball from the other metric space. Let r = 1/2, let $x \in \mathbb{R}^2$ be arbitrary and consider

$$B_d(x;r) = \{y \in \mathbb{R}^2 : d(x,y) < 1/2\} = \{x\}$$

(since d(x, y) is less than 1/2 only when x = y). No open ball in (\mathbb{R}^2, d_2) can fit inside $\{x\}$, since if t > 0 is any number then $B_{d_2}(x; t)$ contains infinitely many points, but $B_d(x; r)$ doesn't.

(c) Let $V \subset X$ be open in (X, ρ) . Then for every $x \in V$ we can find r > 0 such that $B_{\rho}(x; r) \subset V$. Let t > 0 be such that $B_{\gamma}(x; t) \subset B_{\rho}(x; r)$; then in particular, $B_{\gamma}(x; t) \subset V$. Hence, V is also open in (X, γ) . The opposite follows by symmetry.

(d) We only prove " \Rightarrow ", since " \Leftarrow " follows by symmetry. Assume that $\{x_n\}_n$ converges to x in (X, ρ) . Let $\varepsilon > 0$. Since ρ and γ are equivalent, there is some $\tilde{\varepsilon} > 0$ such that $B_{\rho}(x; \tilde{\varepsilon}) \subset B_{\gamma}(x; \varepsilon)$. Let $N \in \mathbb{N}$ be such that $\rho(x, x_n) < \tilde{\varepsilon}$ for all $n \ge N$ – that is, $x_n \in B_{\rho}(x; \tilde{\varepsilon})$. But then also $x_n \in B_{\gamma}(x; \varepsilon)$ – that is, $d(x, x_n) < \varepsilon$ for all $n \ge N$. Hence, $\{x_n\}_n$ converges to x in (X, γ) .

(e) Let $K \subset X$ be a compact subset for (X, ρ) . For any sequence $\{x_n\}_{n \in \mathbb{N}}$ in K, let $\{x_{n_k}\}_{k \in \mathbb{N}}$ be a convergent subsequence in (X, ρ) , converging to a point $a \in K$. By (d), the subsequence also converges to a in (X, γ) . Hence, K is also compact in (X, γ) . The converse follows by symmetry.

(f) Let us write $\gamma(x, y) = \phi(\rho(x, y))$, as in the hint.

- (i) Since $\gamma(x, y) < 1$ for all $x, y \in X$, we have $X = B_{\gamma}(x; 1)$ for any $x \in X$, so X is bounded.
- (ii) γ is clearly nonnegative and symmetric, and vanishes iff x = y (since $\phi(s) = 0$ only when s = 0). For the triangle inequality, we prove first that ϕ is a *subadditive* function, that is, $\phi(s+t) \leq \phi(s) + \phi(t)$. Indeed,

$$\phi(s+t) = \frac{s+t}{1+s+t} = \frac{s}{1+s+t} + \frac{t}{1+s+t} \le \frac{s}{1+s} + \frac{t}{1+t} = \phi(s) + \phi(t)$$

where the inequality follows from the fact that the denominators are smaller. Moreover, ϕ is an increasing function, as $\phi'(s) = \frac{1}{(1+s)^2} \ge 0$. It now follows that

$$\begin{aligned} (x,y) &= \phi(\rho(x,y)) \\ &\leqslant \phi(\rho(x,z) + \rho(z,y)) \\ &\leqslant \phi(\rho(x,z)) + \phi(\rho(z,y)) \\ &= \gamma(x,z) + \gamma(z,y). \end{aligned}$$
(since ϕ is subadditive)

(iii) Since $\gamma(x, y) \leq \rho(x, y)$ for all x, y, we have $B_{\rho}(x; r) \subset B_{\gamma}(x; r)$ for all $x \in X, r > 0$. Conversely, let r > 0 and $x \in X$. Set $t = \phi(r)$. If $y \in X$ is such that $\gamma(x, y) < t$ then, by definition, $\phi(\rho(x, y)) < t = \phi(r)$, so necessarily $\rho(x, y) < r$ (this follows from the fact that ϕ is strictly increasing: If $\phi(s) < \phi(r)$ then s < r). This proves that $B_{\gamma}(x; t) \subset B_{\rho}(x; r)$.

Problem 3.

(a) We can write

 γ

$$\mathbb{1}_{(-\infty,0]}(y) + kd(x,y) = \begin{cases} 1+k|x-y| & \text{if } y \leq 0\\ k|x-y| & \text{if } y > 0. \end{cases}$$

We split into three cases: If $x \ge 0$ then $1 + k|x - y| \ge 1$ and $k|x - y| \ge 0$, with equality attained in the limit $y \to x$. Hence, $f_k^-(x) = 0$. If $x \le -1/k$ then $1 + k|x - y| \ge 1$, with equality when y = x, while $k|x - y| \ge k|x - 0| = 1$. Hence, $f_k^-(x) = 1$. Last, if -1/k < x < 0 then $1 + k|x - y| \ge 1 + k|x - 0| = 1$, while $k|x - y| \ge k|x - 0| = k|x| = -kx < 1$. We conclude that

$$f_k^-(x) = \begin{cases} 1 & \text{if } x \leqslant -1/k \\ -kx & \text{if } -1/k < x < 0 \\ 0 & \text{if } x \ge 0. \end{cases}$$

A similar argument shows that

(b)

$$\begin{split} f_k^-(x) &= \inf_{y \in X} \left(f(y) + kd(x,y) \right) \leqslant \left(f(y) + kd(x,y) \right) \Big|_{y=x} = f(x), \\ f_k^+(x) &= \sup_{y \in X} \left(f(y) - kd(x,y) \right) \geqslant \left(f(y) - kd(x,y) \right) \Big|_{y=x} = f(x). \end{split}$$

$$f_k^-(x) = \inf_{y \in X} \left(f(y) + kd(x, y) \right) \geqslant \inf_{y \in X} \left(a + kd(x, y) \right) = a,$$

and from (a),

$$f_k^-(x) \leqslant f(x) \leqslant b$$

The same argument applies to f_k^+ .

(d) For a number
$$\varepsilon > 0$$
, let $z \in X$ be such that $f_k^-(x_2) \ge f(z) + kd(x_2, z) - \varepsilon$. We get
 $f_k^-(x_1) - f_k^-(x_2) = \inf_{y_1 \in X} (f(y_1) + kd(x_1, y_1)) - \inf_{y_2 \in X} (f(y_2) + kd(x_2, y_2))$
 $\le \inf_{y_1 \in X} (f(y_1) + kd(x_1, y_1)) - (f(z) + kd(x_2, z) - \varepsilon)$
 $\le (f(y_1) + kd(x_1, y_1)) \Big|_{y_1 = z} - (f(z) + kd(x_2, z) - \varepsilon)$
 $= f(z) + kd(x_1, z) - f(z) - kd(x_2, z) + \varepsilon$
 $= k(d(x_1, z) - d(x_2, z)) + \varepsilon$
 $\le kd(x_1, x_2) + \varepsilon$

Switching the roles of x_1 and x_2 gives

$$|f_k^-(x_1) - f_k^-(x_2)| \le kd(x_1, x_2) + \varepsilon.$$

Since $\varepsilon > 0$ was an arbitrary number, we get

$$f_k^-(x_1) - f_k^-(x_2) \Big| \le kd(x_1, x_2),$$

and hence, f_k^- is Lipschitz continuous with Lipschitz constant no larger than k.

(e) Since f is bounded, there is some M > 0 such that $|f(x)| \leq M$ for all $x \in X$. Let $x \in X$, let $\varepsilon > 0$ and find $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ when $d(x, y) < \delta$. We now write

$$f_k^-(x) = \inf_{y \in X} (f(y) + kd(x, y)) = \min(T_1, T_2),$$

where

$$T_1 = \inf_{y \in B(x;\delta)} \left(f(y) + kd(x,y) \right), \qquad T_2 = \inf_{y \notin B(x;\delta)} \left(f(y) + kd(x,y) \right)$$

If we let $k\in\mathbb{N}$ be large enough that $k\delta\geqslant 2M$ then

$$T_2 = \inf_{y \notin B(x;\delta)} \left(f(y) + kd(x,y) \right) \ge \inf_{y \notin B(x;\delta)} \left(-M + kd(x,y) \right) \ge -M + k\delta \ge M.$$

But from (b) we know that $f_k^-(x) \leq f(x) \leq M$, so T_2 cannot possibly be smaller than T_1 . Hence,

$$0\leqslant f(x)-f_k^-(x)=f(x)-\inf_{y\in B(x;\delta)}\bigl(f(y)+kd(x,y)\bigr)=\sup_{y\in B(x;\delta)}\bigl(\underbrace{f(x)-f(y)}_{<\varepsilon}\underbrace{-kd(x,y)}_{\leqslant 0}\bigr)\leqslant \varepsilon,$$

so in particular,

$$|f(x) - f_k^-(x)| \leqslant \varepsilon.$$

(f) If f is uniformly continuous then the choice of δ in (e) is independent of the choice of $x \in X$. Hence, the argument in (e) works for any $x \in X$, and as a consequence, the conclusion $|f(x) - f_k^-(x)| < \varepsilon$ is true for any $x \in X$.

(c)