MAT2400: Mandatory assignment #1, Spring 2020
Suggested solution

Problem 1.

X, X €

FIGURE 1. The balls B;(z;r) for i = 1,2, 00. The ball contains everything within
the indicated area, but not the boundary.

Problem 2.
(a) Let x € R? and let > 0. From the hint we know that

dy(z,y) < V2do(z,7) and da(z,y) < di(z,y) Y x,y € R2
Hence, if s = %r and ¢t = r then for any y € R?,

do(z,y) <s = di(z,y) < V2y(z,y) <V2s=r
and

di(z,y) <t = da(z,y) <di(z,y) <t=r
which means the same as

Ba(x;s) C By(z;7) and By (z;t) C Ba(z;r).

(b) It is enough to find an open ball in one of the metric space into which we cannot fit an open
ball from the other metric space. Let r = 1/2, let z € R? be arbitrary and consider

Ba(z;r) ={y €R® : d(z,y) < 1/2} = {«}

(since d(x,y) is less than 1/2 only when = = ). No open ball in (R?,ds) can fit inside {x}, since if
t > 0 is any number then Bg,(x;t) contains infinitely many points, but Bg(x;r) doesn’t.

(c) Let V C X be open in (X, p). Then for every € V we can find r > 0 such that B,(z;r) C V.
Let t > 0 be such that B, (x;t) C B,(x;7); then in particular, B, (x;t) C V. Hence, V is also open
in (X, ). The opposite follows by symmetry.

(d) We only prove “=" since “<” follows by symmetry. Assume that {z,}, converges to x in
(X,p). Let € > 0. Since p and ~ are equivalent, there is some & > 0 such that B,(xz;€) C B,(z;¢).
Let N € N be such that p(z,z,) < & for all n > N — that is, z,, € B,(z;¢). But then also
Zn € By(x;¢) — that is, d(x,z,) < € for all n > N. Hence, {x,}, converges to z in (X,~).

(e) Let K C X be a compact subset for (X, p). For any sequence {zy }nen in K, let {2y, tren be
a convergent subsequence in (X, p), converging to a point a € K. By (d), the subsequence also
converges to a in (X, 7). Hence, K is also compact in (X, ). The converse follows by symmetry.

(f) Let us write y(z,y) = ¢(p(x,y)), as in the hint.
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(i) Since vy(z,y) < 1 for all z,y € X, we have X = B, (z;1) for any « € X, so X is bounded.

(ii) ~ is clearly nonnegative and symmetric, and vanishes iff x = y (since ¢(s) = 0 only when
s =0). For the triangle inequality, we prove first that ¢ is a subadditive function, that is,
65+ ) < Bls) + B(t). Indeed,

s+t s t s
t) = = < t
) = T T Trs i T s 1+s+1+t 9(s) +o(t)
where the inequality follows from the fact that the denominators are smaller. Moreover, ¢
is an increasing function, as ¢'(s) = (e + yz 2 0. It now follows that

v(z,y) = ¢(p(x,y))

< o(p(z,2) + p(2,v)) (since ¢ is increasing)
< olp(x, 2)) + o(p(z,y)) (since ¢ is subadditive)
=7(@,2) + (2 ).

(ili) Since y(z,y) < p(z,y) for all z,y, we have B,(x;r) C By(a;r) for all z € X, r > 0.
Conversely, let r > 0 and x € X. Set t = ¢(r). If y € X is such that v(z,y) < t then, by
definition, ¢(p(x,y)) < t = ¢(r), so necessarily p(z,y) < r (this follows from the fact that
¢ is strictly increasing: If ¢(s) < ¢(r) then s < r). This proves that B, (x;t) C B,(x;r).

Problem 3.

(a) We can write
1+klz—y| ify<o0
T _eo + kd(x,y) =
(-oc0)(y) + kd(z,y) {k|zy if y > 0.

We split into three cases: If > 0 then 1+ k|z — y| > 1 and k|z — y| > 0, with equality attained
in the limit y — x. Hence, f, () = 0. If x < —1/k then 1 + k[|z — y| > 1, with equality
when y = x, while klz —y| > k|lx — 0| = 1. Hence, f, (z) = 1. Last, if —1/k < 2 < 0 then
1+ klz —y| > 1+ klx — 0] =1, while klx — y| > k|z — 0| = k|z| = —kz < 1. We conclude that

1 ifx < —1/k

fr@)=< —kzr if —1/k<x<0
0 ifz>0.
A similar argument shows that
1 ifx<0
ff@)={1-kx ifo<az<l1/k
0 ifx>1/k.
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(b)
I (@) = inf (f(y) + kd(z,y)) < (f@) + kd(z,y))| _ = (),
¢ (@) = sup(f(y) - kd(@,y)) > (Fy) — kd(a,y))| = f(@).




(c)
fi (@) = ylél)f((f(y) + kd(a:,y)) > in)f((a—k kd(x,y)) =aq

ye
and from (a),

The same argument applies to f,j .

(d) For a number € > 0, let z € X be such that f, (z2) > f(2) + kd(z2,2) — . We get
Jo (@1) = fi (z2) = ylnf (f(y1) + kd(z1,11)) — Hlf ( (y2) + kd(z2,12))
) -

gy ef (f(y1 + kd(z1,91) ( ) + kd(x2, )—E)

< (Flon) + k(e 90)| = (F() + kd(az, 2) <)
= f(2) + kd(x1,2) — f(2) — kd(z2,2) + €
= k(d(z1,2) — d(z2,2)) +¢
< kd(x1,22) + €
Switching the roles of z; and z2 gives
|f1<;_ (z1) — fk_(xg)| < kd(x1,x2) + €.
Since € > 0 was an arbitrary number, we get
i (21) = fir (22)] < kd(z1, 22),

and hence, f, is Lipschitz continuous with Lipschitz constant no larger than k.

(e) Since f is bounded, there is some M > 0 such that |f(z)] < M for all x € X. Let z € X, let
e >0 and find § > 0 such that |f(z) — f(y)| < € when d(z,y) < 6. We now write

fi () = yig((f(y) + kd(z,y)) = min(Ty, Ty),

where

ni= imf (fo)+kday),  Ta= if (f(y)+kd@,y)-

If we let k € N be large enough that k§ > 2M then
To = inf + kd(z, > inf M + kd(x, —M+kd >
2= inf (f)+kdzy) > if (- (z,y)) >
But from (b) we know that f,” (x) < f(x) < M, so Ty cannot possibly be smaller than T'. Hence,
0< f2) = fy (@) = fla) = inf (f(y)+kd(w,y)) = sup (f(x)— fly)—kd(z,y)) <e
yEB(x;0) y€EB(x;5) \j,_/jfo_/
€ ~

so in particular,

[f(z) = fi (z)] <e

(f) If f is uniformly continuous then the choice of ¢ in (e) is independent of the choice of
x € X. Hence, the argument in (e) works for any « € X, and as a consequence, the conclusion
|f(x) = fr (x)| < € is true for any z € X.



