
MAT2400: Mandatory assignment #1, Spring 2020
Suggested solution

Problem 1.

Figure 1. The balls Bi(x; r) for i = 1, 2,∞. The ball contains everything within
the indicated area, but not the boundary.

Problem 2.
(a) Let x ∈ R2 and let r > 0. From the hint we know that

d1(x, y) 6
√

2d2(x, y) and d2(x, y) 6 d1(x, y) ∀ x, y ∈ R2.

Hence, if s = 1√
2r and t = r then for any y ∈ R2,

d2(x, y) < s ⇒ d1(x, y) 6
√

2d2(x, y) <
√

2s = r

and
d1(x, y) < t ⇒ d2(x, y) 6 d1(x, y) < t = r

which means the same as
B2(x; s) ⊂ B1(x; r) and B1(x; t) ⊂ B2(x; r).

(b) It is enough to find an open ball in one of the metric space into which we cannot fit an open
ball from the other metric space. Let r = 1/2, let x ∈ R2 be arbitrary and consider

Bd(x; r) = {y ∈ R2 : d(x, y) < 1/2} = {x}
(since d(x, y) is less than 1/2 only when x = y). No open ball in (R2, d2) can fit inside {x}, since if
t > 0 is any number then Bd2(x; t) contains infinitely many points, but Bd(x; r) doesn’t.

(c) Let V ⊂ X be open in (X, ρ). Then for every x ∈ V we can find r > 0 such that Bρ(x; r) ⊂ V .
Let t > 0 be such that Bγ(x; t) ⊂ Bρ(x; r); then in particular, Bγ(x; t) ⊂ V . Hence, V is also open
in (X, γ). The opposite follows by symmetry.

(d) We only prove “⇒”, since “⇐” follows by symmetry. Assume that {xn}n converges to x in
(X, ρ). Let ε > 0. Since ρ and γ are equivalent, there is some ε̃ > 0 such that Bρ(x; ε̃) ⊂ Bγ(x; ε).
Let N ∈ N be such that ρ(x, xn) < ε̃ for all n > N – that is, xn ∈ Bρ(x; ε̃). But then also
xn ∈ Bγ(x; ε) – that is, d(x, xn) < ε for all n > N . Hence, {xn}n converges to x in (X, γ).

(e) Let K ⊂ X be a compact subset for (X, ρ). For any sequence {xn}n∈N in K, let {xnk
}k∈N be

a convergent subsequence in (X, ρ), converging to a point a ∈ K. By (d), the subsequence also
converges to a in (X, γ). Hence, K is also compact in (X, γ). The converse follows by symmetry.

(f) Let us write γ(x, y) = φ(ρ(x, y)), as in the hint.
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(i) Since γ(x, y) < 1 for all x, y ∈ X, we have X = Bγ(x; 1) for any x ∈ X, so X is bounded.
(ii) γ is clearly nonnegative and symmetric, and vanishes iff x = y (since φ(s) = 0 only when

s = 0). For the triangle inequality, we prove first that φ is a subadditive function, that is,
φ(s+ t) 6 φ(s) + φ(t). Indeed,

φ(s+ t) = s+ t

1 + s+ t
= s

1 + s+ t
+ t

1 + s+ t
6

s

1 + s
+ t

1 + t
= φ(s) + φ(t)

where the inequality follows from the fact that the denominators are smaller. Moreover, φ
is an increasing function, as φ′(s) = 1

(1+s)2 > 0. It now follows that

γ(x, y) = φ(ρ(x, y))
6 φ

(
ρ(x, z) + ρ(z, y)

)
(since φ is increasing)

6 φ(ρ(x, z)) + φ(ρ(z, y)) (since φ is subadditive)
= γ(x, z) + γ(z, y).

(iii) Since γ(x, y) 6 ρ(x, y) for all x, y, we have Bρ(x; r) ⊂ Bγ(x; r) for all x ∈ X, r > 0.
Conversely, let r > 0 and x ∈ X. Set t = φ(r). If y ∈ X is such that γ(x, y) < t then, by
definition, φ(ρ(x, y)) < t = φ(r), so necessarily ρ(x, y) < r (this follows from the fact that
φ is strictly increasing: If φ(s) < φ(r) then s < r). This proves that Bγ(x; t) ⊂ Bρ(x; r).

Problem 3.
(a) We can write

1(−∞,0](y) + kd(x, y) =
{

1 + k|x− y| if y 6 0
k|x− y| if y > 0.

We split into three cases: If x > 0 then 1 + k|x− y| > 1 and k|x− y| > 0, with equality attained
in the limit y → x. Hence, f−k (x) = 0. If x 6 −1/k then 1 + k|x − y| > 1, with equality
when y = x, while k|x − y| > k|x − 0| = 1. Hence, f−k (x) = 1. Last, if −1/k < x < 0 then
1 + k|x− y| > 1 + k|x− 0| = 1, while k|x− y| > k|x− 0| = k|x| = −kx < 1. We conclude that

f−k (x) =


1 if x 6 −1/k
−kx if − 1/k < x < 0
0 if x > 0.

A similar argument shows that

f+
k (x) =


1 if x 6 0
1− kx if 0 < x < 1/k
0 if x > 1/k.

(b)

f−k (x) = inf
y∈X

(
f(y) + kd(x, y)

)
6
(
f(y) + kd(x, y)

)∣∣∣
y=x

= f(x),

f+
k (x) = sup

y∈X

(
f(y)− kd(x, y)

)
>
(
f(y)− kd(x, y)

)∣∣∣
y=x

= f(x).
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(c)
f−k (x) = inf

y∈X

(
f(y) + kd(x, y)

)
> inf
y∈X

(
a+ kd(x, y)

)
= a,

and from (a),
f−k (x) 6 f(x) 6 b.

The same argument applies to f+
k .

(d) For a number ε > 0, let z ∈ X be such that f−k (x2) > f(z) + kd(x2, z)− ε. We get
f−k (x1)− f−k (x2) = inf

y1∈X

(
f(y1) + kd(x1, y1)

)
− inf
y2∈X

(
f(y2) + kd(x2, y2)

)
6 inf
y1∈X

(
f(y1) + kd(x1, y1)

)
−
(
f(z) + kd(x2, z)− ε

)
6
(
f(y1) + kd(x1, y1)

)∣∣∣
y1=z

−
(
f(z) + kd(x2, z)− ε

)
= f(z) + kd(x1, z)− f(z)− kd(x2, z) + ε

= k
(
d(x1, z)− d(x2, z)

)
+ ε

6 kd(x1, x2) + ε

Switching the roles of x1 and x2 gives∣∣f−k (x1)− f−k (x2)
∣∣ 6 kd(x1, x2) + ε.

Since ε > 0 was an arbitrary number, we get∣∣f−k (x1)− f−k (x2)
∣∣ 6 kd(x1, x2),

and hence, f−k is Lipschitz continuous with Lipschitz constant no larger than k.

(e) Since f is bounded, there is some M > 0 such that |f(x)| 6M for all x ∈ X. Let x ∈ X, let
ε > 0 and find δ > 0 such that |f(x)− f(y)| < ε when d(x, y) < δ. We now write

f−k (x) = inf
y∈X

(
f(y) + kd(x, y)

)
= min(T1, T2),

where
T1 = inf

y∈B(x;δ)

(
f(y) + kd(x, y)

)
, T2 = inf

y/∈B(x;δ)

(
f(y) + kd(x, y)

)
.

If we let k ∈ N be large enough that kδ > 2M then
T2 = inf

y/∈B(x;δ)

(
f(y) + kd(x, y)

)
> inf
y/∈B(x;δ)

(
−M + kd(x, y)

)
> −M + kδ >M.

But from (b) we know that f−k (x) 6 f(x) 6M , so T2 cannot possibly be smaller than T1. Hence,
0 6 f(x)− f−k (x) = f(x)− inf

y∈B(x;δ)

(
f(y) + kd(x, y)

)
= sup
y∈B(x;δ)

(
f(x)− f(y)︸ ︷︷ ︸

<ε

−kd(x, y)︸ ︷︷ ︸
60

)
6 ε,

so in particular,
|f(x)− f−k (x)| 6 ε.

(f) If f is uniformly continuous then the choice of δ in (e) is independent of the choice of
x ∈ X. Hence, the argument in (e) works for any x ∈ X, and as a consequence, the conclusion
|f(x)− f−k (x)| < ε is true for any x ∈ X.


