Problem 1

Figure 1. The balls $B_{i}(x ; r)$ for $i=1,2, \infty$. The ball contains everything within the indicated area, but not the boundary.

Problem 2.

(a) Let $x \in \mathbb{R}^{2}$ and let $r>0$. From the hint we know that

$$
d_{1}(x, y) \leqslant \sqrt{2} d_{2}(x, y) \quad \text { and } \quad d_{2}(x, y) \leqslant d_{1}(x, y) \quad \forall x, y \in \mathbb{R}^{2}
$$

Hence, if $s=\frac{1}{\sqrt{2}} r$ and $t=r$ then for any $y \in \mathbb{R}^{2}$,

$$
d_{2}(x, y)<s \quad \Rightarrow \quad d_{1}(x, y) \leqslant \sqrt{2} d_{2}(x, y)<\sqrt{2} s=r
$$

and

$$
d_{1}(x, y)<t \quad \Rightarrow \quad d_{2}(x, y) \leqslant d_{1}(x, y)<t=r
$$

which means the same as

$$
B_{2}(x ; s) \subset B_{1}(x ; r) \quad \text { and } \quad B_{1}(x ; t) \subset B_{2}(x ; r) .
$$

(b) It is enough to find an open ball in one of the metric space into which we cannot fit an open ball from the other metric space. Let $r=1 / 2$, let $x \in \mathbb{R}^{2}$ be arbitrary and consider

$$
B_{d}(x ; r)=\left\{y \in \mathbb{R}^{2}: d(x, y)<1 / 2\right\}=\{x\}
$$

(since $d(x, y)$ is less than $1 / 2$ only when $x=y)$. No open ball in $\left(\mathbb{R}^{2}, d_{2}\right)$ can fit inside $\{x\}$, since if $t>0$ is any number then $B_{d_{2}}(x ; t)$ contains infinitely many points, but $B_{d}(x ; r)$ doesn't.
(c) Let $V \subset X$ be open in (X, ρ). Then for every $x \in V$ we can find $r>0$ such that $B_{\rho}(x ; r) \subset V$. Let $t>0$ be such that $B_{\gamma}(x ; t) \subset B_{\rho}(x ; r)$; then in particular, $B_{\gamma}(x ; t) \subset V$. Hence, V is also open in (X, γ). The opposite follows by symmetry.
(d) We only prove " \Rightarrow ", since " \Leftarrow " follows by symmetry. Assume that $\left\{x_{n}\right\}_{n}$ converges to x in (X, ρ). Let $\varepsilon>0$. Since ρ and γ are equivalent, there is some $\tilde{\varepsilon}>0$ such that $B_{\rho}(x ; \tilde{\varepsilon}) \subset B_{\gamma}(x ; \varepsilon)$. Let $N \in \mathbb{N}$ be such that $\rho\left(x, x_{n}\right)<\tilde{\varepsilon}$ for all $n \geqslant N$ - that is, $x_{n} \in B_{\rho}(x ; \tilde{\varepsilon})$. But then also $x_{n} \in B_{\gamma}(x ; \varepsilon)$ - that is, $d\left(x, x_{n}\right)<\varepsilon$ for all $n \geqslant N$. Hence, $\left\{x_{n}\right\}_{n}$ converges to x in (X, γ).
(e) Let $K \subset X$ be a compact subset for (X, ρ). For any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in K, let $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ be a convergent subsequence in (X, ρ), converging to a point $a \in K$. By (d), the subsequence also converges to a in (X, γ). Hence, K is also compact in (X, γ). The converse follows by symmetry.
(f) Let us write $\gamma(x, y)=\phi(\rho(x, y))$, as in the hint.
(i) Since $\gamma(x, y)<1$ for all $x, y \in X$, we have $X=B_{\gamma}(x ; 1)$ for any $x \in X$, so X is bounded.
(ii) γ is clearly nonnegative and symmetric, and vanishes iff $x=y$ (since $\phi(s)=0$ only when $s=0)$. For the triangle inequality, we prove first that ϕ is a subadditive function, that is, $\phi(s+t) \leqslant \phi(s)+\phi(t)$. Indeed,

$$
\phi(s+t)=\frac{s+t}{1+s+t}=\frac{s}{1+s+t}+\frac{t}{1+s+t} \leqslant \frac{s}{1+s}+\frac{t}{1+t}=\phi(s)+\phi(t)
$$

where the inequality follows from the fact that the denominators are smaller. Moreover, ϕ is an increasing function, as $\phi^{\prime}(s)=\frac{1}{(1+s)^{2}} \geqslant 0$. It now follows that

$$
\begin{aligned}
\gamma(x, y) & =\phi(\rho(x, y)) & & \\
& \leqslant \phi(\rho(x, z)+\rho(z, y)) & & \text { (since } \phi \text { is increasing) } \\
& \leqslant \phi(\rho(x, z))+\phi(\rho(z, y)) & & \text { (since } \phi \text { is subadditive) } \\
& =\gamma(x, z)+\gamma(z, y) . & &
\end{aligned}
$$

(iii) Since $\gamma(x, y) \leqslant \rho(x, y)$ for all x, y, we have $B_{\rho}(x ; r) \subset B_{\gamma}(x ; r)$ for all $x \in X, r>0$. Conversely, let $r>0$ and $x \in X$. Set $t=\phi(r)$. If $y \in X$ is such that $\gamma(x, y)<t$ then, by definition, $\phi(\rho(x, y))<t=\phi(r)$, so necessarily $\rho(x, y)<r$ (this follows from the fact that ϕ is strictly increasing: If $\phi(s)<\phi(r)$ then $s<r)$. This proves that $B_{\gamma}(x ; t) \subset B_{\rho}(x ; r)$.

Problem 3.

(a) We can write

$$
\mathbb{1}_{(-\infty, 0]}(y)+k d(x, y)= \begin{cases}1+k|x-y| & \text { if } y \leqslant 0 \\ k|x-y| & \text { if } y>0\end{cases}
$$

We split into three cases: If $x \geqslant 0$ then $1+k|x-y| \geqslant 1$ and $k|x-y| \geqslant 0$, with equality attained in the limit $y \rightarrow x$. Hence, $f_{k}^{-}(x)=0$. If $x \leqslant-1 / k$ then $1+k|x-y| \geqslant 1$, with equality when $y=x$, while $k|x-y| \geqslant k|x-0|=1$. Hence, $f_{k}^{-}(x)=1$. Last, if $-1 / k<x<0$ then $1+k|x-y| \geqslant 1+k|x-0|=1$, while $k|x-y| \geqslant k|x-0|=k|x|=-k x<1$. We conclude that

$$
f_{k}^{-}(x)= \begin{cases}1 & \text { if } x \leqslant-1 / k \\ -k x & \text { if }-1 / k<x<0 \\ 0 & \text { if } x \geqslant 0\end{cases}
$$

A similar argument shows that

$$
f_{k}^{+}(x)= \begin{cases}1 & \text { if } x \leqslant 0 \\ 1-k x & \text { if } 0<x<1 / k \\ 0 & \text { if } x \geqslant 1 / k\end{cases}
$$

(b)

$$
\begin{aligned}
f_{k}^{-}(x) & =\inf _{y \in X}(f(y)+k d(x, y)) \leqslant\left.(f(y)+k d(x, y))\right|_{y=x}=f(x) \\
f_{k}^{+}(x) & =\sup _{y \in X}(f(y)-k d(x, y)) \geqslant\left.(f(y)-k d(x, y))\right|_{y=x}=f(x)
\end{aligned}
$$

(c)

$$
f_{k}^{-}(x)=\inf _{y \in X}(f(y)+k d(x, y)) \geqslant \inf _{y \in X}(a+k d(x, y))=a
$$

and from (a),

$$
f_{k}^{-}(x) \leqslant f(x) \leqslant b .
$$

The same argument applies to f_{k}^{+}.
(d) For a number $\varepsilon>0$, let $z \in X$ be such that $f_{k}^{-}\left(x_{2}\right) \geqslant f(z)+k d\left(x_{2}, z\right)-\varepsilon$. We get

$$
\begin{aligned}
f_{k}^{-}\left(x_{1}\right)-f_{k}^{-}\left(x_{2}\right) & =\inf _{y_{1} \in X}\left(f\left(y_{1}\right)+k d\left(x_{1}, y_{1}\right)\right)-\inf _{y_{2} \in X}\left(f\left(y_{2}\right)+k d\left(x_{2}, y_{2}\right)\right) \\
& \leqslant \inf _{y_{1} \in X}\left(f\left(y_{1}\right)+k d\left(x_{1}, y_{1}\right)\right)-\left(f(z)+k d\left(x_{2}, z\right)-\varepsilon\right) \\
& \leqslant\left.\left(f\left(y_{1}\right)+k d\left(x_{1}, y_{1}\right)\right)\right|_{y_{1}=z}-\left(f(z)+k d\left(x_{2}, z\right)-\varepsilon\right) \\
& =f(z)+k d\left(x_{1}, z\right)-f(z)-k d\left(x_{2}, z\right)+\varepsilon \\
& =k\left(d\left(x_{1}, z\right)-d\left(x_{2}, z\right)\right)+\varepsilon \\
& \leqslant k d\left(x_{1}, x_{2}\right)+\varepsilon
\end{aligned}
$$

Switching the roles of x_{1} and x_{2} gives

$$
\left|f_{k}^{-}\left(x_{1}\right)-f_{k}^{-}\left(x_{2}\right)\right| \leqslant k d\left(x_{1}, x_{2}\right)+\varepsilon .
$$

Since $\varepsilon>0$ was an arbitrary number, we get

$$
\left|f_{k}^{-}\left(x_{1}\right)-f_{k}^{-}\left(x_{2}\right)\right| \leqslant k d\left(x_{1}, x_{2}\right)
$$

and hence, f_{k}^{-}is Lipschitz continuous with Lipschitz constant no larger than k.
(e) Since f is bounded, there is some $M>0$ such that $|f(x)| \leqslant M$ for all $x \in X$. Let $x \in X$, let $\varepsilon>0$ and find $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ when $d(x, y)<\delta$. We now write

$$
f_{k}^{-}(x)=\inf _{y \in X}(f(y)+k d(x, y))=\min \left(T_{1}, T_{2}\right)
$$

where

$$
T_{1}=\inf _{y \in B(x ; \delta)}(f(y)+k d(x, y)), \quad T_{2}=\inf _{y \notin B(x ; \delta)}(f(y)+k d(x, y))
$$

If we let $k \in \mathbb{N}$ be large enough that $k \delta \geqslant 2 M$ then

$$
T_{2}=\inf _{y \notin B(x ; \delta)}(f(y)+k d(x, y)) \geqslant \inf _{y \notin B(x ; \delta)}(-M+k d(x, y)) \geqslant-M+k \delta \geqslant M .
$$

But from (b) we know that $f_{k}^{-}(x) \leqslant f(x) \leqslant M$, so T_{2} cannot possibly be smaller than T_{1}. Hence,

$$
0 \leqslant f(x)-f_{k}^{-}(x)=f(x)-\inf _{y \in B(x ; \delta)}(f(y)+k d(x, y))=\sup _{y \in B(x ; \delta)}(\underbrace{f(x)-f(y)}_{<\varepsilon} \underbrace{-k d(x, y)}_{\leqslant 0}) \leqslant \varepsilon,
$$

so in particular,

$$
\left|f(x)-f_{k}^{-}(x)\right| \leqslant \varepsilon
$$

(f) If f is uniformly continuous then the choice of δ in (e) is independent of the choice of $x \in X$. Hence, the argument in (e) works for any $x \in X$, and as a consequence, the conclusion $\left|f(x)-f_{k}^{-}(x)\right|<\varepsilon$ is true for any $x \in X$.

