MAT2400: Mandatory assignment #2, Spring 2020 Suggested solution

Problem 1.

(a) We compute first the Gateaux derivatives:

 $\lim_{h \to 0} \frac{F(A+hR) - F(A)}{h} = \lim_{h \to 0} \frac{A^2 + hAR + hRA + hR^2 - A^2}{h} = \lim_{h \to 0} \left(AR + RA + hR^2\right) = AR + RA$ for any $A, R \in M$. This indicates that F'(A)(R) = AR + RA. Indeed,

 $F(A+R) - F(A) - (AR+RA) = A^2 + AR + RA + R^2 - A^2 - AR - RA = R^2 = o(||R||_{\mathcal{L}})$

as $R \to 0$. It remains to prove that $F'(A) \in \mathcal{L}(M)$. It is clear that F'(A) is linear, and moreover $||F'(A)(R)||_M = ||AR + RA||_M \leq 2||A||_M ||R||_M$, so F'(A) is bounded with $||F'(A)||_{\mathcal{L}(M)} \leq 2||A||_M$.

(b) There was a typo in the problem: It should have been I_Y , not I_M .

We wish to apply the inverse function theorem. The function F is Fréchet differentiable, and its derivative is continuous since

...

$$\begin{aligned} \|F'(A) - F'(B)\|_{\mathcal{L}(M)} &= \sup_{\substack{R \in M \\ \|R\|_M = 1}} \left\| (AR + RA) - (BR + RB) \right\|_M \\ &\leqslant \sup_{\substack{R \in M \\ \|R\|_M = 1}} \|(A - B)R\|_M + \sup_{\substack{R \in M \\ \|R\|_M = 1}} \|R(A - B)\|_M \\ &\leqslant \|A - B\|_M + \|B - A\|_M = 2\|A - B\|_M \end{aligned}$$

(so F' is Lipschitz continuous with constant 2). Moreover, at $A = I_Y$ the derivative satisfies $F'(I_Y)(R) = 2R$, so $F'(I_Y) = 2I_M$, which is invertible (with inverse $F'(I_Y) = \frac{1}{2}I_M$). Hence, there is some $\varepsilon > 0$ such that F is invertible in $B(I_Y; \varepsilon)$. If $A = F^{-1}(B)$ then $B = F(A) = A^2$. The operator A is not unique, since also F(-A) = B.

Problem 2.

(a) Let $x \in X$ and let $\{x_n\}_n$ be any sequence in D converging to x. Then the sequence $\{Ax_n\}_n$ is Cauchy in Y, since $||Ax_n - Ax_m||_Y \leq ||A||_{\mathcal{L}} ||x_n - x_m||_X$, and $\{x_n\}_n$ is Cauchy. Since Y is complete, there is some $y \in Y$ such that $Ax_n \to y$ as $n \to \infty$. The point y is unique, for if $\{x'_n\}_n$ is another sequence converging to x then $\|y - Ax'_n\|_Y \leq \|y - Ax_n\|_Y + \|Ax_n - Ax'_n\|_Y \leq \|y - Ax_n\|_Y$ $||y - Ax_n||_Y + ||A||_{\mathcal{L}} ||x_n - x'_n||_X \to 0 \text{ as } n \to \infty.$

(b) If $x \in D$ then $x_n = x$ (for all $n \in \mathbb{N}$) defines a sequence in D converging to x. Hence, $B(x) = \lim_{n \to \infty} Ax_n = Ax.$

(c) Let $\alpha \in \mathbb{K}$, let $x, y \in X$ and let $\{x_n\}_n$ and $\{y_n\}_n$ be sequences in D converging to x and y, respectively. Then $\alpha x_n + y_n \rightarrow \alpha x + y$, so

 $B(\alpha x + y) = \lim_{n \to \infty} A(\alpha x_n + y_n) = \lim_{n \to \infty} \left(\alpha A(x_n) + A(y_n) \right) = \alpha \lim_{n \to \infty} A(x_n) + \lim_{n \to \infty} A(y_n) = \alpha B(x) + B(y).$

Hence, B is linear. To see that B is bounded, let $x \in X$ and let $\{x_n\}_n$ be a sequence in D converging to x. Then

$$||B(x)||_{Y} = \lim_{n \to \infty} ||A(x_{n})||_{Y} \leq ||A||_{\mathcal{L}} \lim_{n \to \infty} ||x_{n}||_{X} = ||A||_{\mathcal{L}} ||x||_{X}.$$

Thus, B is bounded with $||B||_{\mathcal{L}} \leq ||A||_{\mathcal{L}}$. (In fact, $||B||_{\mathcal{L}} = ||A||_{\mathcal{L}}$, since $|B||_{D} = A$.)

(d) Let \tilde{B} be another such operator. If $x \in X$ and $\{x_n\}_n$ is a sequence in D converging to x, then, by the triangle inequality,

$$\|\tilde{B}x - Bx\|_{Y} \leq \|\tilde{B}x - \tilde{B}x_{n}\|_{Y} + \|\tilde{B}x_{n} - Ax_{n}\|_{Y} + \|Ax_{n} - Bx\|_{Y}.$$

Here, $\|\tilde{B}x - \tilde{B}x_n\|_Y \to 0$ since \tilde{B} is continuous; $\|\tilde{B}x_n - Ax_n\|_Y = 0$ since \tilde{B} and A agree on D; and $\|Ax_n - Bx\|_Y \to 0$, by definition of B. It follows that $\|\tilde{B}x - Bx\|_Y = 0$, whence $\tilde{B}x = Bx$. Since x was arbitrary, we conclude $\tilde{B} = B$.

Problem 3. There were two issues with Problem 3 that I regrettably did not notice when I wrote the problem. The issue arises when adding two functions $u \in D_n$ and $v \in D_m$ – at first, it might not even seem like D is a vector space. For completeness I prove this here:

Proposition. Let $n \in \mathbb{N}$. Then $D_n \subset D_{nm}$ for every $m \in \mathbb{N}$. In particular, if $u \in D_n$ has the representation $u = \sum_{i=0}^n a_i v_{n,i}$ then it can be written as

$$u = \sum_{k=0}^{nm} \tilde{a}_k v_{nm,k}, \qquad \tilde{a}_k = \sum_{i=0}^n a_i v_{n,i} (k/(nm)).$$

Proof. For every $n \in \mathbb{N}$, the space D_n is the space of all $u \in C([0, 1], \mathbb{R})$ that are affine (i.e., a first order polynomial) on each interval $[\frac{i}{n}, \frac{i+1}{n}]$. Since nm is divisible by n, we can write

$$\left[\frac{i}{n},\frac{i+1}{n}\right] = \bigcup_{j=im}^{(i+1)m-1} \left[\frac{j}{nm},\frac{j+1}{nm}\right].$$

Hence, a function which is affine on every interval $\left[\frac{i}{n}, \frac{i+1}{n}\right]$ is also affine on every interval $\left[\frac{j}{nm}, \frac{j+1}{nm}\right]$. It follows that every function in D_n also lies in D_{nm} .

To arrive at the representation formula, we note first that if $u \in D_n$ then

$$u = \sum_{i=0}^{n} u(i/n)v_{n,i}.$$

Hence,

$$u = \sum_{k=0}^{nm} \tilde{a}_k v_{nm,k}, \qquad \tilde{a}_k = u(k/(nm)) = \sum_{i=0}^n a_i v_{n,i}(k/(nm)).$$

A corollary of the proposition is that $D = \bigcup_{n \in \mathbb{N}} D_n$ is a vector space.

Since the proposition implies that every function $u \in D$ will have multiple (in fact, infinitely many) different representations, it might not be clear that F is well-defined – that is, that the value F(u) does not depend on how we choose to represent u. I prove next that F is indeed well-defined.

Proposition. The function F defined in 3(c) is well-defined.

Proof. Let $n, m \in \mathbb{N}$ and let $u \in D_n$. By the above proposition we know that u can be written as

$$u = \sum_{i=0}^{n} a_i v_{n,i} = \sum_{k=0}^{nm} \tilde{a}_k v_{nm,k}, \quad \text{where } \tilde{a}_k = \sum_{i=0}^{n} a_i v_{n,i} (k/(nm)).$$

We claim that F(u) is independent on which representation we choose. Indeed,

$$\begin{split} F(u) &= F\left(\sum_{k=0}^{nm} \tilde{a}_{k} v_{nm,k}\right) \\ &= \frac{1}{2nm} \left(\tilde{a}_{0} + \tilde{a}_{nm}\right) + \frac{1}{nm} \sum_{k=1}^{nm-1} \left(\sum_{i=0}^{n} a_{i} v_{n,i}(k/(nm))\right) \\ &= \frac{1}{2nm} \left(a_{0} + a_{n}\right) + \frac{1}{nm} \sum_{i=0}^{n} a_{i} \sum_{k=1}^{nm-1} v_{n,i}(k/(nm)) \\ &= \frac{a_{0}}{nm} \left(\frac{1}{2} + \sum_{k=1}^{nm-1} v_{n,0}(k/(nm))\right) + \frac{a_{n}}{nm} \left(\frac{1}{2} + \sum_{k=1}^{nm-1} v_{n,n}(k/(nm))\right) + \frac{1}{nm} \sum_{i=1}^{n-1} a_{i} \sum_{k=1}^{nm-1} \frac{v_{n,i}(k/(nm))}{m} \\ &= \frac{a_{0}}{nm} \underbrace{\left(\frac{1}{2} + \sum_{k=1}^{m} (1 - k/m)\right)}_{=m/2} + \frac{a_{n}}{nm} \underbrace{\left(\frac{1}{2} + \sum_{k=m(n-1)}^{nm-1} (k/m - n + 1)\right)}_{=m/2} + \frac{1}{n} \sum_{i=1}^{n-1} a_{i} \\ &= \frac{1}{2n} \left(a_{0} + a_{n}\right) + \frac{1}{n} \sum_{i=1}^{n-1} a_{i} \\ &= F\left(\sum_{i=0}^{n} a_{i} v_{n,i}\right). \end{split}$$

(a) Let $u \in D_n$. We claim that $||u|| = \bar{u} := \max_{i=0,1,\dots,n} |a_i|$. Indeed, if $t \in [i/n, (i+1)/n]$ then $u(t) = a_i v_{n,i}(t) + a_{i+1} v_{n,i+1}(t) = a_i v_{n,i}(t) + a_{i+1}(1 - v_{n,i}(t))$, so

$$|u(t)| \leq |a_i|v_{n,i}(t) + |a_{i+1}|(1 - v_{n,i}(t))$$

$$\leq \bar{a}v_{n,i}(t) + \bar{a}(1 - v_{n,i}(t)) = \bar{a}.$$

Thus, $||u|| \leq \bar{a}$. Conversely, if the maximum is attained at $|a_i| = \bar{a}$ then $|u(i/n)| = |a_i| = \bar{a}$, so $||u|| \ge \bar{a}$.

(b) Let $u \in X$ and let $\varepsilon > 0$. Since [0, 1] is compact, u is uniformly continuous, so there is some $\delta > 0$ such that $|u(t) - u(s)| < \varepsilon$ whenever $|t - s| < \delta$. Let $n \in \mathbb{N}$ be such that $1/n < \delta$. Define $a_i = u(i/n)$ for $i = 0, 1, \ldots, n$ and let $v(t) = \sum_{i=0}^n a_i v_{n,i}(t)$. Then $v \in D$, and if $t \in [0, 1]$ lies in some interval [i/n, (i+1)/n] then

$$\begin{aligned} |u(t) - v(t)| &= |u(t) - u(i/n)v_{n,i}(t) - u((i+1)/n)v_{n,i+1}(t)| \\ &= |(u(t) - u(i/n))v_{n,i}(t) + (u(t) - u((i+1)/n)v_{n,i+1}(t)| \\ &\leq |u(t) - u(i/n)|v_{n,i}(t) + |u(t) - u((i+1)/n|v_{n,i+1}(t)| \\ &< \varepsilon v_{n,i}(t) + \varepsilon v_{n,i+1}(t) \\ &= \varepsilon. \end{aligned}$$

Hence, $||u - v|| = \max_{t \in [0,1]} |u(t) - v(t)| < \varepsilon$.

(c) *F* is clearly homogeneous: If $u(t) = \sum_{i=0}^{n} a_i v_{n,i}(t)$ then $\alpha u(t) = \sum_{i=0}^{n} b_i v_{n,i}(t)$, where $b_i = \alpha a_i$, so $\alpha u \in D$. To show that *F* is additive, let $u, v \in D$ and let $n, m \in \mathbb{N}$ be such that $u \in D_n$ and $v \in D_m$. By the first proposition above, we have $u, v \in D_{nm}$. Writing

$$u = \sum_{i=0}^{nm} a_i v_{nm,i}, \qquad v = \sum_{i=0}^{nm} b_i v_{nm,i},$$

we get

$$F(u+v) = \frac{1}{2nm} (a_0 + b_0 + a_{nm} + b_{nm}) + \frac{1}{nm} \sum_{i=0}^{nm} a_i + b_i$$

= $\left(\frac{1}{2nm} (a_0 + a_{nm}) + \frac{1}{nm} \sum_{i=0}^{nm} a_i\right) + \left(\frac{1}{2nm} (b_0 + b_{nm}) + \frac{1}{nm} \sum_{i=0}^{nm} b_i\right)$
= $F(u) + F(v).$

To see that u is bounded, let $u \in D_n$ and estimate

$$|F(u)| \leq \frac{1}{2n}(|a_0| + |a_1|) + \frac{1}{n}\sum_{i=1}^{n-1}|a_i| \leq \frac{1}{2n}(||u|| + ||u||) + \frac{1}{n}\sum_{i=1}^{n-1}||u|| = ||u||.$$

Thus, F is bounded with operator norm $||F||_{\mathcal{L}} \leq 1$. If $u \in D$ is constant, i.e. $a_0 = \cdots = a_n$ then $|F(u)| = \left|\frac{1}{2n}(a_0 + a_0) + \frac{1}{n}\sum_{i=1}^{n-1}a_0\right| = |a_0| = ||u||$, so we conclude that $||F||_{\mathcal{L}} = 1$.

(d) This follows from Problem 1: F is a bounded linear functional from a dense subspace $D \subset X$ to the Banach space $Y = \mathbb{R}$.

(e) It is readily checked that $F(v_{n,i}) = \int_0^1 v_{n,i}(t) dt$, and hence $F(u) = \int_0^1 u(t) dt$ for all $u \in D$. If $u \in X$ and $\{v_n\}_n$ is a sequence in D then $G(u) = \lim_{n \to \infty} F(u_n) = \lim_{n \to \infty} \int_0^1 u_n(t) dt = \int_0^1 u(t) dt$, the last step following from Proposition 4.3.1 (continuity of the integral).