
MAT2400: Mandatory assignment #2, Spring 2020
Suggested solution

Problem 1.
(a) We compute first the Gateaux derivatives:

lim
h→0

F (A+ hR)− F (A)
h

= lim
h→0

A2 + hAR+ hRA+ hR2 −A2

h
= lim

h→0

(
AR+RA+hR2) = AR+RA

for any A,R ∈M . This indicates that F ′(A)(R) = AR+RA. Indeed,
F (A+R)− F (A)− (AR+RA) = A2 +AR+RA+R2 −A2 −AR−RA = R2 = o(‖R‖L)

as R→ 0. It remains to prove that F ′(A) ∈ L(M). It is clear that F ′(A) is linear, and moreover
‖F ′(A)(R)‖M = ‖AR+RA‖M 6 2‖A‖M‖R‖M , so F ′(A) is bounded with ‖F ′(A)‖L(M) 6 2‖A‖M .

(b) There was a typo in the problem: It should have been IY , not IM .
We wish to apply the inverse function theorem. The function F is Fréchet differentiable, and its

derivative is continuous since
‖F ′(A)− F ′(B)‖L(M) = sup

R∈M
‖R‖M =1

∥∥(AR+RA)− (BR+RB)
∥∥

M

6 sup
R∈M
‖R‖M =1

‖(A−B)R‖M + sup
R∈M
‖R‖M =1

‖R(A−B)‖M

6 ‖A−B‖M + ‖B −A‖M = 2‖A−B‖M

(so F ′ is Lipschitz continuous with constant 2). Moreover, at A = IY the derivative satisfies
F ′(IY )(R) = 2R, so F ′(IY ) = 2IM , which is invertible (with inverse F ′(IY ) = 1

2IM ). Hence, there
is some ε > 0 such that F is invertible in B(IY ; ε). If A = F−1(B) then B = F (A) = A2. The
operator A is not unique, since also F (−A) = B.

Problem 2.
(a) Let x ∈ X and let {xn}n be any sequence in D converging to x. Then the sequence {Axn}n

is Cauchy in Y , since ‖Axn − Axm‖Y 6 ‖A‖L‖xn − xm‖X , and {xn}n is Cauchy. Since Y is
complete, there is some y ∈ Y such that Axn → y as n → ∞. The point y is unique, for if
{x′n}n is another sequence converging to x then ‖y −Ax′n‖Y 6 ‖y −Axn‖Y + ‖Axn −Ax′n‖Y 6
‖y −Axn‖Y + ‖A‖L‖xn − x′n‖X → 0 as n→∞.

(b) If x ∈ D then xn = x (for all n ∈ N) defines a sequence in D converging to x. Hence,
B(x) = limn→∞Axn = Ax.

(c) Let α ∈ K, let x, y ∈ X and let {xn}n and {yn}n be sequences in D converging to x and y,
respectively. Then αxn + yn → αx+ y, so
B(αx+y) = lim

n→∞
A(αxn+yn) = lim

n→∞

(
αA(xn)+A(yn)

)
= α lim

n→∞
A(xn)+ lim

n→∞
A(yn) = αB(x)+B(y).

Hence, B is linear. To see that B is bounded, let x ∈ X and let {xn}n be a sequence in D
converging to x. Then

‖B(x)‖Y = lim
n→∞

‖A(xn)‖Y 6 ‖A‖L lim
n→∞

‖xn‖X = ‖A‖L‖x‖X .

Thus, B is bounded with ‖B‖L 6 ‖A‖L. (In fact, ‖B‖L = ‖A‖L, since B
∣∣
D

= A.)

(d) Let B̃ be another such operator. If x ∈ X and {xn}n is a sequence in D converging to x, then,
by the triangle inequality,

‖B̃x−Bx‖Y 6 ‖B̃x− B̃xn‖Y + ‖B̃xn −Axn‖Y + ‖Axn −Bx‖Y .
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Here, ‖B̃x − B̃xn‖Y → 0 since B̃ is continuous; ‖B̃xn − Axn‖Y = 0 since B̃ and A agree on D;
and ‖Axn − Bx‖Y → 0, by definition of B. It follows that ‖B̃x − Bx‖Y = 0, whence B̃x = Bx.
Since x was arbitrary, we conclude B̃ = B.

Problem 3. There were two issues with Problem 3 that I regrettably did not notice when I
wrote the problem. The issue arises when adding two functions u ∈ Dn and v ∈ Dm – at first, it
might not even seem like D is a vector space. For completeness I prove this here:

Proposition. Let n ∈ N. Then Dn ⊂ Dnm for every m ∈ N. In particular, if u ∈ Dn has the
representation u =

∑n
i=0 aivn,i then it can be written as

u =
nm∑
k=0

ãkvnm,k, ãk =
n∑

i=0
aivn,i(k/(nm)).

Proof. For every n,∈ N, the space Dn is the space of all u ∈ C([0, 1],R) that are affine (i.e., a first
order polynomial) on each interval [ i

n ,
i+1

n ]. Since nm is divisible by n, we can write

[ i
n ,

i+1
n ] =

(i+1)m−1⋃
j=im

[ j
nm ,

j+1
nm ].

Hence, a function which is affine on every interval [ i
n ,

i+1
n ] is also affine on every interval [ j

nm ,
j+1
nm ].

It follows that every function in Dn also lies in Dnm.
To arrive at the representation formula, we note first that if u ∈ Dn then

u =
n∑

i=0
u(i/n)vn,i.

Hence,

u =
nm∑
k=0

ãkvnm,k, ãk = u(k/(nm)) =
n∑

i=0
aivn,i(k/(nm)).

�

A corollary of the proposition is that D = ∪n∈NDn is a vector space.
Since the proposition implies that every function u ∈ D will have multiple (in fact, infinitely

many) different representations, it might not be clear that F is well-defined – that is, that the value
F (u) does not depend on how we choose to represent u. I prove next that F is indeed well-defined.

Proposition. The function F defined in 3(c) is well-defined.

Proof. Let n,m ∈ N and let u ∈ Dn. By the above proposition we know that u can be written as

u =
n∑

i=0
aivn,i =

nm∑
k=0

ãkvnm,k, where ãk =
n∑

i=0
aivn,i(k/(nm)).
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We claim that F (u) is independent on which representation we choose. Indeed,

F (u) = F

(
nm∑
k=0

ãkvnm,k

)

= 1
2nm

(
ã0 + ãnm

)
+ 1
nm

nm−1∑
k=1

(
n∑

i=0
aivn,i(k/(nm))

)

= 1
2nm

(
a0 + an

)
+ 1
nm

n∑
i=0

ai

nm−1∑
k=1

vn,i(k/(nm))

= a0

nm

(
1
2 +

nm−1∑
k=1

vn,0(k/(nm))
)

+ an

nm

(
1
2 +

nm−1∑
k=1

vn,n(k/(nm))
)

+ 1
nm

n−1∑
i=1

ai

nm−1∑
k=1

vn,i(k/(nm))
m︸ ︷︷ ︸

=m

= a0

nm

(
1
2 +

m∑
k=1

(1− k/m)
)

︸ ︷︷ ︸
=m/2

+ an

nm

1
2 +

nm−1∑
k=m(n−1)

(k/m− n+ 1)


︸ ︷︷ ︸

=m/2

+ 1
n

n−1∑
i=1

ai

= 1
2n (a0 + an) + 1

n

n−1∑
i=1

ai

= F

(
n∑

i=0
aivn,i

)
. �

(a) Let u ∈ Dn. We claim that ‖u‖ = ū := maxi=0,1,...,n |ai|. Indeed, if t ∈ [i/n, (i + 1)/n] then
u(t) = aivn,i(t) + ai+1vn,i+1(t) = aivn,i(t) + ai+1(1− vn,i(t)), so

|u(t)| 6 |ai|vn,i(t) + |ai+1|(1− vn,i(t))
6 āvn,i(t) + ā(1− vn,i(t)) = ā.

Thus, ‖u‖ 6 ā. Conversely, if the maximum is attained at |ai| = ā then |u(i/n)| = |ai| = ā, so
‖u‖ > ā.

(b) Let u ∈ X and let ε > 0. Since [0, 1] is compact, u is uniformly continuous, so there is some
δ > 0 such that |u(t) − u(s)| < ε whenever |t − s| < δ. Let n ∈ N be such that 1/n < δ. Define
ai = u(i/n) for i = 0, 1, . . . , n and let v(t) =

∑n
i=0 aivn,i(t). Then v ∈ D, and if t ∈ [0, 1] lies in

some interval [i/n, (i+ 1)/n] then

|u(t)− v(t)| =
∣∣u(t)− u(i/n)vn,i(t)− u((i+ 1)/n)vn,i+1(t)

∣∣
=
∣∣(u(t)− u(i/n)

)
vn,i(t) +

(
u(t)− u((i+ 1)/n

)
vn,i+1(t)

∣∣
6
∣∣u(t)− u(i/n)

∣∣vn,i(t) +
∣∣u(t)− u((i+ 1)/n

∣∣vn,i+1(t)
< εvn,i(t) + εvn,i+1(t)
= ε.

Hence, ‖u− v‖ = maxt∈[0,1] |u(t)− v(t)| < ε.

(c) F is clearly homogeneous: If u(t) =
∑n

i=0 aivn,i(t) then αu(t) =
∑n

i=0 bivn,i(t), where bi = αai,
so αu ∈ D. To show that F is additive, let u, v ∈ D and let n,m ∈ N be such that u ∈ Dn and
v ∈ Dm. By the first proposition above, we have u, v ∈ Dnm. Writing

u =
nm∑
i=0

aivnm,i, v =
nm∑
i=0

bivnm,i,
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we get

F (u+ v) = 1
2nm (a0 + b0 + anm + bnm) + 1

nm

nm∑
i=0

ai + bi

=
(

1
2nm (a0 + anm) + 1

nm

nm∑
i=0

ai

)
+
(

1
2nm (b0 + bnm) + 1

nm

nm∑
i=0

bi

)
= F (u) + F (v).

To see that u is bounded, let u ∈ Dn and estimate

|F (u)| 6 1
2n (|a0|+ |a1|) + 1

n

n−1∑
i=1
|ai| 6

1
2n (‖u‖+ ‖u‖) + 1

n

n−1∑
i=1
‖u‖ = ‖u‖.

Thus, F is bounded with operator norm ‖F‖L 6 1. If u ∈ D is constant, i.e. a0 = · · · = an then
|F (u)| =

∣∣∣ 1
2n (a0 + a0) + 1

n

∑n−1
i=1 a0

∣∣∣ = |a0| = ‖u‖, so we conclude that ‖F‖L = 1.

(d) This follows from Problem 1: F is a bounded linear functional from a dense subspace D ⊂ X
to the Banach space Y = R.

(e) It is readily checked that F (vn,i) =
∫ 1

0 vn,i(t) dt, and hence F (u) =
∫ 1

0 u(t) dt for all u ∈ D. If
u ∈ X and {vn}n is a sequence in D then G(u) = limn→∞ F (un) = limn→∞

∫ 1
0 un(t) dt =

∫ 1
0 u(t) dt,

the last step following from Proposition 4.3.1 (continuity of the integral).


