MAT2400: Mandatory assignment \#2, Spring 2020

Problem 1.

(a) We compute first the Gateaux derivatives:
$\lim _{h \rightarrow 0} \frac{F(A+h R)-F(A)}{h}=\lim _{h \rightarrow 0} \frac{A^{2}+h A R+h R A+h R^{2}-A^{2}}{h}=\lim _{h \rightarrow 0}\left(A R+R A+h R^{2}\right)=A R+R A$ for any $A, R \in M$. This indicates that $F^{\prime}(A)(R)=A R+R A$. Indeed,

$$
F(A+R)-F(A)-(A R+R A)=A^{2}+A R+R A+R^{2}-A^{2}-A R-R A=R^{2}=o\left(\|R\|_{\mathcal{L}}\right)
$$

as $R \rightarrow 0$. It remains to prove that $F^{\prime}(A) \in \mathcal{L}(M)$. It is clear that $F^{\prime}(A)$ is linear, and moreover $\left\|F^{\prime}(A)(R)\right\|_{M}=\|A R+R A\|_{M} \leqslant 2\|A\|_{M}\|R\|_{M}$, so $F^{\prime}(A)$ is bounded with $\left\|F^{\prime}(A)\right\|_{\mathcal{L}(M)} \leqslant 2\|A\|_{M}$.
(b) There was a typo in the problem: It should have been I_{Y}, not I_{M}.

We wish to apply the inverse function theorem. The function F is Fréchet differentiable, and its derivative is continuous since

$$
\left.\begin{array}{rl}
\left\|F^{\prime}(A)-F^{\prime}(B)\right\|_{\mathcal{L}(M)} & =\sup _{\substack{R \in M \\
\|R\|_{M}=1}}\|(A R+R A)-(B R+R B)\|_{M} \\
& \leqslant \sup _{\substack{R \in M}}^{\|R\|_{M}=1}<
\end{array}(A-B) R\left\|_{M}+\sup _{\substack{R \in M \\
\|R\|_{M}=1}}\right\| R(A-B) \|_{M}\right)
$$

(so F^{\prime} is Lipschitz continuous with constant 2). Moreover, at $A=I_{Y}$ the derivative satisfies $F^{\prime}\left(I_{Y}\right)(R)=2 R$, so $F^{\prime}\left(I_{Y}\right)=2 I_{M}$, which is invertible (with inverse $\left.F^{\prime}\left(I_{Y}\right)=\frac{1}{2} I_{M}\right)$. Hence, there is some $\varepsilon>0$ such that F is invertible in $B\left(I_{Y} ; \varepsilon\right)$. If $A=F^{-1}(B)$ then $B=F(A)=A^{2}$. The operator A is not unique, since also $F(-A)=B$.

Problem 2.

(a) Let $x \in X$ and let $\left\{x_{n}\right\}_{n}$ be any sequence in D converging to x. Then the sequence $\left\{A x_{n}\right\}_{n}$ is Cauchy in Y, since $\left\|A x_{n}-A x_{m}\right\|_{Y} \leqslant\|A\|_{\mathcal{L}}\left\|x_{n}-x_{m}\right\|_{X}$, and $\left\{x_{n}\right\}_{n}$ is Cauchy. Since Y is complete, there is some $y \in Y$ such that $A x_{n} \rightarrow y$ as $n \rightarrow \infty$. The point y is unique, for if $\left\{x_{n}^{\prime}\right\}_{n}$ is another sequence converging to x then $\left\|y-A x_{n}^{\prime}\right\|_{Y} \leqslant\left\|y-A x_{n}\right\|_{Y}+\left\|A x_{n}-A x_{n}^{\prime}\right\|_{Y} \leqslant$ $\left\|y-A x_{n}\right\|_{Y}+\|A\|_{\mathcal{L}}\left\|x_{n}-x_{n}^{\prime}\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$.
(b) If $x \in D$ then $x_{n}=x$ (for all $n \in \mathbb{N}$) defines a sequence in D converging to x. Hence, $B(x)=\lim _{n \rightarrow \infty} A x_{n}=A x$.
(c) Let $\alpha \in \mathbb{K}$, let $x, y \in X$ and let $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ be sequences in D converging to x and y, respectively. Then $\alpha x_{n}+y_{n} \rightarrow \alpha x+y$, so
$B(\alpha x+y)=\lim _{n \rightarrow \infty} A\left(\alpha x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty}\left(\alpha A\left(x_{n}\right)+A\left(y_{n}\right)\right)=\alpha \lim _{n \rightarrow \infty} A\left(x_{n}\right)+\lim _{n \rightarrow \infty} A\left(y_{n}\right)=\alpha B(x)+B(y)$.
Hence, B is linear. To see that B is bounded, let $x \in X$ and let $\left\{x_{n}\right\}_{n}$ be a sequence in D converging to x. Then

$$
\|B(x)\|_{Y}=\lim _{n \rightarrow \infty}\left\|A\left(x_{n}\right)\right\|_{Y} \leqslant\|A\|_{\mathcal{L}} \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{X}=\|A\|_{\mathcal{L}}\|x\|_{X}
$$

Thus, B is bounded with $\|B\|_{\mathcal{L}} \leqslant\|A\|_{\mathcal{L}}$. (In fact, $\|B\|_{\mathcal{L}}=\|A\|_{\mathcal{L}}$, since $\left.B\right|_{D}=A$.)
(d) Let \tilde{B} be another such operator. If $x \in X$ and $\left\{x_{n}\right\}_{n}$ is a sequence in D converging to x, then, by the triangle inequality,

$$
\|\tilde{B} x-B x\|_{Y} \leqslant\left\|\tilde{B} x-\tilde{B} x_{n}\right\|_{Y}+\left\|\tilde{B} x_{n}-A x_{n}\right\|_{Y}+\left\|A x_{n}-B x\right\|_{Y}
$$

Here, $\left\|\tilde{B} x-\tilde{B} x_{n}\right\|_{Y} \rightarrow 0$ since \tilde{B} is continuous; $\left\|\tilde{B} x_{n}-A x_{n}\right\|_{Y}=0$ since \tilde{B} and A agree on D; and $\left\|A x_{n}-B x\right\|_{Y} \rightarrow 0$, by definition of B. It follows that $\|\tilde{B} x-B x\|_{Y}=0$, whence $\tilde{B} x=B x$. Since x was arbitrary, we conclude $\tilde{B}=B$.

Problem 3. There were two issues with Problem 3 that I regrettably did not notice when I wrote the problem. The issue arises when adding two functions $u \in D_{n}$ and $v \in D_{m}$ - at first, it might not even seem like D is a vector space. For completeness I prove this here:

Proposition. Let $n \in \mathbb{N}$. Then $D_{n} \subset D_{n m}$ for every $m \in \mathbb{N}$. In particular, if $u \in D_{n}$ has the representation $u=\sum_{i=0}^{n} a_{i} v_{n, i}$ then it can be written as

$$
u=\sum_{k=0}^{n m} \tilde{a}_{k} v_{n m, k}, \quad \tilde{a}_{k}=\sum_{i=0}^{n} a_{i} v_{n, i}(k /(n m)) .
$$

Proof. For every $n, \in \mathbb{N}$, the space D_{n} is the space of all $u \in C([0,1], \mathbb{R})$ that are affine (i.e., a first order polynomial) on each interval $\left[\frac{i}{n}, \frac{i+1}{n}\right]$. Since $n m$ is divisible by n, we can write

$$
\left[\frac{i}{n}, \frac{i+1}{n}\right]=\bigcup_{j=i m}^{(i+1) m-1}\left[\frac{j}{n m}, \frac{j+1}{n m}\right]
$$

Hence, a function which is affine on every interval $\left[\frac{i}{n}, \frac{i+1}{n}\right]$ is also affine on every interval $\left[\frac{j}{n m}, \frac{j+1}{n m}\right]$. It follows that every function in D_{n} also lies in $D_{n m}$.

To arrive at the representation formula, we note first that if $u \in D_{n}$ then

$$
u=\sum_{i=0}^{n} u(i / n) v_{n, i}
$$

Hence,

$$
u=\sum_{k=0}^{n m} \tilde{a}_{k} v_{n m, k}, \quad \tilde{a}_{k}=u(k /(n m))=\sum_{i=0}^{n} a_{i} v_{n, i}(k /(n m)) .
$$

A corollary of the proposition is that $D=\cup_{n \in \mathbb{N}} D_{n}$ is a vector space.
Since the proposition implies that every function $u \in D$ will have multiple (in fact, infinitely many) different representations, it might not be clear that F is well-defined - that is, that the value $F(u)$ does not depend on how we choose to represent u. I prove next that F is indeed well-defined.

Proposition. The function F defined in 3(c) is well-defined.
Proof. Let $n, m \in \mathbb{N}$ and let $u \in D_{n}$. By the above proposition we know that u can be written as

$$
u=\sum_{i=0}^{n} a_{i} v_{n, i}=\sum_{k=0}^{n m} \tilde{a}_{k} v_{n m, k}, \quad \text { where } \tilde{a}_{k}=\sum_{i=0}^{n} a_{i} v_{n, i}(k /(n m)) .
$$

We claim that $F(u)$ is independent on which representation we choose. Indeed,

$$
\begin{aligned}
& F(u)=F\left(\sum_{k=0}^{n m} \tilde{a}_{k} v_{n m, k}\right) \\
& =\frac{1}{2 n m}\left(\tilde{a}_{0}+\tilde{a}_{n m}\right)+\frac{1}{n m} \sum_{k=1}^{n m-1}\left(\sum_{i=0}^{n} a_{i} v_{n, i}(k /(n m))\right) \\
& =\frac{1}{2 n m}\left(a_{0}+a_{n}\right)+\frac{1}{n m} \sum_{i=0}^{n} a_{i} \sum_{k=1}^{n m-1} v_{n, i}(k /(n m)) \\
& =\frac{a_{0}}{n m}\left(\frac{1}{2}+\sum_{k=1}^{n m-1} v_{n, 0}(k /(n m))\right)+\frac{a_{n}}{n m}\left(\frac{1}{2}+\sum_{k=1}^{n m-1} v_{n, n}(k /(n m))\right)+\frac{1}{n m} \sum_{i=1}^{n-1} a_{i} \underbrace{\sum_{k=1}^{n m-1} \frac{v_{n, i}(k /(n m))}{m}}_{=m} \\
& =\frac{a_{0}}{n m} \underbrace{\left(\frac{1}{2}+\sum_{k=1}^{m}(1-k / m)\right)}_{=m / 2}+\frac{a_{n}}{n m} \underbrace{\left(\frac{1}{2}+\sum_{k=m(n-1)}^{n m-1}(k / m-n+1)\right)}_{=m / 2}+\frac{1}{n} \sum_{i=1}^{n-1} a_{i} \\
& =\frac{1}{2 n}\left(a_{0}+a_{n}\right)+\frac{1}{n} \sum_{i=1}^{n-1} a_{i} \\
& =F\left(\sum_{i=0}^{n} a_{i} v_{n, i}\right) \text {. }
\end{aligned}
$$

(a) Let $u \in D_{n}$. We claim that $\|u\|=\bar{u}:=\max _{i=0,1, \ldots, n}\left|a_{i}\right|$. Indeed, if $t \in[i / n,(i+1) / n]$ then $u(t)=a_{i} v_{n, i}(t)+a_{i+1} v_{n, i+1}(t)=a_{i} v_{n, i}(t)+a_{i+1}\left(1-v_{n, i}(t)\right)$, so

$$
\begin{aligned}
|u(t)| & \leqslant\left|a_{i}\right| v_{n, i}(t)+\left|a_{i+1}\right|\left(1-v_{n, i}(t)\right) \\
& \leqslant \bar{a} v_{n, i}(t)+\bar{a}\left(1-v_{n, i}(t)\right)=\bar{a} .
\end{aligned}
$$

Thus, $\|u\| \leqslant \bar{a}$. Conversely, if the maximum is attained at $\left|a_{i}\right|=\bar{a}$ then $|u(i / n)|=\left|a_{i}\right|=\bar{a}$, so $\|u\| \geqslant \bar{a}$.
(b) Let $u \in X$ and let $\varepsilon>0$. Since [0,1] is compact, u is uniformly continuous, so there is some $\delta>0$ such that $|u(t)-u(s)|<\varepsilon$ whenever $|t-s|<\delta$. Let $n \in \mathbb{N}$ be such that $1 / n<\delta$. Define $a_{i}=u(i / n)$ for $i=0,1, \ldots, n$ and let $v(t)=\sum_{i=0}^{n} a_{i} v_{n, i}(t)$. Then $v \in D$, and if $t \in[0,1]$ lies in some interval $[i / n,(i+1) / n]$ then

$$
\begin{aligned}
|u(t)-v(t)| & =\left|u(t)-u(i / n) v_{n, i}(t)-u((i+1) / n) v_{n, i+1}(t)\right| \\
& =\mid(u(t)-u(i / n)) v_{n, i}(t)+\left(u(t)-u((i+1) / n) v_{n, i+1}(t) \mid\right. \\
& \leqslant|u(t)-u(i / n)| v_{n, i}(t)+\mid u(t)-u\left((i+1) / n \mid v_{n, i+1}(t)\right. \\
& <\varepsilon v_{n, i}(t)+\varepsilon v_{n, i+1}(t) \\
& =\varepsilon .
\end{aligned}
$$

Hence, $\|u-v\|=\max _{t \in[0,1]}|u(t)-v(t)|<\varepsilon$.
(c) F is clearly homogeneous: If $u(t)=\sum_{i=0}^{n} a_{i} v_{n, i}(t)$ then $\alpha u(t)=\sum_{i=0}^{n} b_{i} v_{n, i}(t)$, where $b_{i}=\alpha a_{i}$, so $\alpha u \in D$. To show that F is additive, let $u, v \in D$ and let $n, m \in \mathbb{N}$ be such that $u \in D_{n}$ and $v \in D_{m}$. By the first proposition above, we have $u, v \in D_{n m}$. Writing

$$
u=\sum_{i=0}^{n m} a_{i} v_{n m, i}, \quad v=\sum_{i=0}^{n m} b_{i} v_{n m, i},
$$

we get

$$
\begin{aligned}
F(u+v) & =\frac{1}{2 n m}\left(a_{0}+b_{0}+a_{n m}+b_{n m}\right)+\frac{1}{n m} \sum_{i=0}^{n m} a_{i}+b_{i} \\
& =\left(\frac{1}{2 n m}\left(a_{0}+a_{n m}\right)+\frac{1}{n m} \sum_{i=0}^{n m} a_{i}\right)+\left(\frac{1}{2 n m}\left(b_{0}+b_{n m}\right)+\frac{1}{n m} \sum_{i=0}^{n m} b_{i}\right) \\
& =F(u)+F(v)
\end{aligned}
$$

To see that u is bounded, let $u \in D_{n}$ and estimate

$$
|F(u)| \leqslant \frac{1}{2 n}\left(\left|a_{0}\right|+\left|a_{1}\right|\right)+\frac{1}{n} \sum_{i=1}^{n-1}\left|a_{i}\right| \leqslant \frac{1}{2 n}(\|u\|+\|u\|)+\frac{1}{n} \sum_{i=1}^{n-1}\|u\|=\|u\|
$$

Thus, F is bounded with operator norm $\|F\|_{\mathcal{L}} \leqslant 1$. If $u \in D$ is constant, i.e. $a_{0}=\cdots=a_{n}$ then $|F(u)|=\left|\frac{1}{2 n}\left(a_{0}+a_{0}\right)+\frac{1}{n} \sum_{i=1}^{n-1} a_{0}\right|=\left|a_{0}\right|=\|u\|$, so we conclude that $\|F\|_{\mathcal{L}}=1$.
(d) This follows from Problem 1: F is a bounded linear functional from a dense subspace $D \subset X$ to the Banach space $Y=\mathbb{R}$.
(e) It is readily checked that $F\left(v_{n, i}\right)=\int_{0}^{1} v_{n, i}(t) d t$, and hence $F(u)=\int_{0}^{1} u(t) d t$ for all $u \in D$. If $u \in X$ and $\left\{v_{n}\right\}_{n}$ is a sequence in D then $G(u)=\lim _{n \rightarrow \infty} F\left(u_{n}\right)=\lim _{n \rightarrow \infty} \int_{0}^{1} u_{n}(t) d t=\int_{0}^{1} u(t) d t$, the last step following from Proposition 4.3.1 (continuity of the integral).

