
Solutions to section 3.3 (and how to write)

The first mandatory assignment is coming up, and you should therefore think about
what a nice hand-in should look like! Below I have written solutions for section 3.3.
Take a look at the structure of the arguments, and try to answer the problems in the
assignment in a similar fashion.1 (There is, of course, nothing special about these
particular solutions. You can get the exact same input from other sources, e.g. by
reading the proofs in Spaces.)

1 First: An example

Take a look in Spaces by Tom Lindstrøm. All of the proofs and arguments are almost
all text! We write ’formal mathematical arguments’ in our usual ’informal language’
to make them readable and easy to understand. Here’s an example that illustrates
this point.

Proposition 1. Let a, b ≥ 0. Then a + b ≤
√

2
√
a2 + b2.

Ugly proof. 0 ≤ (a− b)2 = a2−2ab+ b2 ⇒ 2ab ≤ a2 + b2. So (a+ b)2 = a2 +2ab+ b2 ≤
2(a2 + b2). Then a + b =

√
(a + b)2 ≤

√
2(a2 + b2) =

√
2
√
a2 + b2.

Nicer proof. Assume a, b ≥ 0. Then a2 − 2ab + b2 = (a− b)2 ≥ 0, which is equivalent
to 2ab ≤ a2 + b2. It follows that

(a + b)2 = a2 + 2ab + b2 ≤ 2(a2 + b2).

Thus, taking the square root of the expressions on both sides of the inequality, we
obtain that

a + b ≤
√

2
√
a2 + b2

because the square root function preserves the order on nonnegative numbers.

In my view it is much easier to understand the second proof, simply because you can
read the second proof as an ’ordinary text’.2 Try to do write like this yourself!

1You don’t have to follow the exact set up I use here (e.g. gray background for solutions etc.),
and you can also submit hand written solutions. The main takeaway from these notes should just
be the content within the gray boxes. In particular how the proofs are structured.

2The second proof also illustrates a nice trick: Don’t hesitate to put bigger expressions on a new
line, to make the arguements easier to read!
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2 Solutions

Exercise 3.3.1 (See the exercise text in the book).

Solution. a) Let x ∈ X and r > 0. Recall that the open ball centered at x
with radius r is the set

B(x, r) = {y ∈ X : d(x, y) < r}.

Assume first that r ≤ 1. Then, if y ∈ B(x, r), we know that d(x, y) < 1. Because
d is the discrete metric on X this implies that d(x, y) = 0 or equivalently that
x = y. Hence, we see that B(x, r) ⊆ {x}. As we clearly have x ∈ B(x, r) we
conclude that B(x, r) = {x}.
Now, suppose r > 1. If y ∈ X, then d(x, y) ∈ {0, 1}, so in particular d(x, y) < r.
This shows that y ∈ B(x, r), which means that X ⊆ B(x, r). Clearly, B(x, r) ⊆
X as well. We conclude that B(x, r) = X.

b) Let A ⊆ X. We will show that A is open. To do this it suffices to show that
for any a ∈ A there is r > 0 such that B(a, r) ⊆ A. In the proof of a) we saw
that B(a, 1) = {a} ⊂ A, so we are already done! Because A was arbitrary, we
conclude that all subsets of X are open.

A set is closed if and only if its complement is open. Hence, because all subsets
of X are open, all subsets of X must also be closed! Indeed, if A ⊆ X then Ac

is open, which means that A is closed.

c) Assume that f : X → Y is a function, and let V ⊆ Y be an open set. Then,
by b), we know that f−1(V ) is open as well. Thus, proposition 3.3.10 tells us
that f is continuous.

Exercise 3.3.2 Draw a ball in the Manhattan metric. Show that the Manhattan
metric and the usual metric on R2 have the same open sets.

Solution. For x, y ∈ R2 we use the notation x = (x1, x2), y = (y1, y2). Then
the Manhattan metric is given by

dM(x, y) = |x1 − y1|+ |x2 − y2|.

Fix r > 0. It is not hard to see that dM(x, 0) = |x1| + |x2| = r determines a
square in R2 with corners (r, 0), (0, r), (−r, 0), (0,−r). Hence, the ball BM(0, r)
is the inside of this square. A ball BM(y, r), y ∈ R2 will have the same shape,
but be located with center in y instead. (You should of course actually try to
draw this.)

Now we prove the second claim.a Note that for all x, y ∈ R2 we haveb

‖x− y‖ ≤ dM(x, y) ≤
√

2‖x− y‖.
Let x ∈ R2 and r > 0. Write BM(x, r) and B‖·‖(x, r) for the corresponding balls
in the Manhattan metric and ’usual metric’ respectivly. From the inequalites
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above we get

B‖·‖(x, r) ⊂ BM(x,
√

2r) and BM(x, r) ⊂ B‖·‖(x, r).

This implies that the metrics have the same open sets! To see this, assume that
U ⊆ R2 is an open set in the Manhattan metric dM , and take x ∈ U . Because
U is open we can find r > 0 such that BM(x, r) ⊂ U . Then, from the above,

B‖·‖(x, r/
√

2) ⊂ BM(x, r) ⊂ U.

This means exactly that U is open with respect to the usual metric. Hence, an
open set w.r.t dM is an open set w.r.t d(x, y) = ‖x− y‖. The other direction is
similar.

aThe intuition is that you can fit a square inside a circle if the diagonal is shorter than
the radius, and similary that you can fit a circle inside a square if the radius is smaller than
1/
√

2 times the diagonal.
bThe second inequality is actually what we proved on the first page of these notes. I leave

the first inequality you.

Exercise 3.3.3. F is a nonempty closed subset of R with the usual metric. Show that
supF ∈ F and inf F ∈ F . Find a bounded but not closed set such that supF ∈ F
and inf F ∈ F .

Solution. Note that for each n ∈ N we can find xn ∈ F such that

supF − 1

n
≤ xn ≤ supF.

Indeed, if we couldn’t do this there would be m such that

x ≤ supF − 1

m
≤ supF

for all x ∈ F , and this contradicts the definition of supF . Clearly xn → supF
(because of the ’squeeze law’) and because F is closed we conclude that supF ∈
F . A similar argument shows that inf F ∈ F .

The easiest example of a bounded but not closed set F such that supF ∈ F is
probably F = (0, 1]. Then supF = 1 ∈ F , but F is not closed because 0 /∈ F .

Exercise 3.3.7. Let A be a subset of a metric space (X, d). Show that the interior
points of A are the exterior points of Ac, and that the exterior points of A are the
interior points of Ac. Check that the boundary points of A are the boundary points
of Ac.

Solution. Let x ∈ X. Recall that x is called
• an interior point of A if there is r > 0 such that B(x, r) ⊂ A,
• an exterior point of A is there is r > 0 such that B(x, r) ⊂ Ac.
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• a boundary point if of A all r > 0

B(x, r) ∩ A 6= ∅ and B(x, r) ∩ Ac 6= ∅.

If you apply the first definition to Ac, you see that the definition of an interior
point of Ac is exactly the same as the definition of an exterioir point of A.
Similarily, applying the second definition to Ac we see (by the first definition)
that an exterior point of Ac is an interior point of (Ac)c = A.

Using the third definition on Ac, ’nothing happens’ because A = (Ac)c. We
conclude that A and Ac have the same boundary points.

Exercise 3.3.11 Prove proposition 3.3.12. Find an example of an infinite collection
of open sets whose intersection is not open.

3.3.12 a) Let G be a (possibly infinite) collection of open sets. Take x ∈⋃
G∈G G. By definition of union, there is G′ ∈ G such that x ∈ G′. Because G′

is open, there is r > 0 such that B(x, r) ⊂ G′. But then

B(x, r) ⊂ G′ ⊂
⋃
G∈G

G.

This shows that
⋃

G∈G G is open.

3.3.12 b) Assume now that G = {G1, G2, ..., Gn} is a finite collection of open
sets. Take x ∈

⋂
G∈G G = G1 ∩ G2 ∩ · · · ∩ Gn. Then x ∈ Gi for all i =

1, 2, ..., n. As Gi is open, we can find ri > 0 such that B(x, ri) ⊂ Gi. Put
r = min{r1, r2, ..., rn}. Then

B(x, r) ⊂ B(x, r1) ∩B(x, r2) ∩ · · ·B(x, rn) ⊂
⋂
G∈G

G,

showing that
⋂

G∈G G is open.

Example: For each n ∈ N consider the open interval In = (−1/n, 1/n) ⊂ R,
and let G = {In}n be the family consisting of all these intervals. Then

⋂
G∈G

G =
∞⋂
n=1

(− 1

n
,

1

n
) = {0}.

To see this note that 0 ∈ In for all n ∈ N, and that in fact this is the only
number lying in all of the intervals (why?).

Ulriks’s exerxise 1. Let f : X → Y be a continuous function between metric spaces.
Fix y ∈ Y . Show that the set of solutions to the equation f(x) = y is closed.

Solution. The set in question is

{x ∈ X : f(x) = y} =
{
x ∈ X : f(x) ∈ {y}

}
= f−1({y}).
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{y} is a closed set (see exercise last week), and hence f−1({x}) is also closed
because f is continuous (Prop. 3.3.11).

Ulrik’s exercise 2. Show that the support (as defined by Ulrik) of a continuous
function on R (with the usual metric) is open .

Solution. Let f : R→ R be a continuous function. The support suppf of f is
the set of points x ∈ R such that f(x) 6= 0. That is

suppf = {x ∈ R : f(x) 6= 0}

=
{
x ∈ R : f(x) ∈ {0}c

}
= f−1

(
{0}c

)
.

As {0}c is an open set and f is continuous we conclude that suppf is open (see
prop. 3.3.10).
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