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Submission deadline

Thursday 25 February 2021, 14:30 in Canvas (canvas.uio.no).

Instructions

You can choose between writing in English or Norwegian. You will find a
Norwegian–English mathematical dictionary at

https://www.uio.no/studier/emner/matnat/math/MAT2400/data/norsk-
engelsk-ordliste.html.

You can choose between scanning handwritten notes or typing the solution
directly on a computer (for instance with LATEX). The assignment must be
submitted as a single PDF file. Scanned pages must be clearly legible; please
use either the “Color” or “Grayscale” settings. The submission must contain
your name, course and assignment number.

It is expected that you give a clear presentation with all necessary explanations.
Remember to include all relevant plots and figures. Students who fail the as-
signment, but have made a genuine effort at solving the exercises, are given a
second attempt at revising their answers. All aids, including collaboration, are
allowed, but the submission must be written by you and reflect your under-
standing of the subject. If we doubt that you have understood the content you
have handed in, we may request that you give an oral account.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to
illness or other reasons, you have to contact the Student Administration at the
Department of Mathematics (e-mail: studieinfo@math.uio.no) well before the
deadline.

All mandatory assignments in this course must be approved in the same semester,
before you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html
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Note: You will find a list of hints on page 8.

Problem 1.

(a) Show that we can always interchange two sup’s: If A and B are sets and
f : A×B → R is a function, then

sup
x∈A

sup
y∈B

f(x, y) = sup
y∈B

sup
x∈A

f(x, y) (1)

To avoid dealing with infinities, you can assume that f is bounded from above.
Note: The same holds for two inf’s.

(b) We can not always interchange an inf and a sup: Show that if f(x, y) =
(x+ y)2 then

sup
x∈A

inf
y∈B

f(x, y) 6= inf
y∈B

sup
x∈A

f(x, y)

where A = B = [−1, 1].

Recall that supx∈A g(x) (for some function g) means the same as sup{g(x) :
x ∈ A}.

Solution:

(a) Let α = sup(x,y)∈A×B f(x, y). We claim that both sides of (1) equal α.
First, f(x, y) 6 α for any (x, y), so supy∈B f(x, y) 6 α for any x ∈ A, so it
follows that supx∈A supy∈B f(x, y) 6 α. For the converse, note that

sup
y∈B

f(a, y) > f(a, b)

for any fixed a ∈ A and b ∈ B. Hence, taking the supremum over a on the
left-hand side yields

sup
x∈A

sup
y∈B

f(x, y) > f(a, b)

for any fixed a ∈ A and b ∈ B. In other words, the left-hand side is an
upper bound for f , so

sup
x∈A

sup
y∈B

f(x, y) > α.

We conclude that α equals the left-hand side of (1). By symmetry, the
same goes for the right-hand side.

Alternatively: For every (a, b) ∈ A×B, we have

f(a, b) 6 sup
y∈B

f(a, y) 6 sup
x∈A

sup
y∈B

f(x, y).

Taking the supremum over a ∈ A and then over b ∈ B gives

sup
b∈B

sup
a∈A

f(a, b) 6 sup
x∈A

sup
y∈B

f(x, y).
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Arguing in the opposite order gives “>”, and hence, there is equality in the
above.

(b) For any x ∈ A we have

inf
y∈B

f(x, y) = inf
y∈[−1,1]

(x+ y)2 = (x− (−x))2 = 0

so supx∈A infy∈B f(x, y) = 0. On the other hand,

sup
x∈A

f(x, y) = sup
x∈[−1,1]

(x+ y)2 =

{
(1 + y)2 if y > 0

((−1) + y)2 if y < 0,

so infy∈B supx∈A f(x, y) = (1− 0)2 = 1.

Problem 2. In this exercise we will investigate the limit of “double sequences”
– sets of objects xi,j in some metric space (X, d) indexed over i, j ∈ N. The
question is whether we can interchange limits in i and j:

lim
i→∞

lim
j→∞

xi,j = lim
j→∞

lim
i→∞

xi,j . (2)

See Figure 1 for an illustration. Note that we need to assume that all of the
limits

yi = lim
j→∞

xi,j , y = lim
i→∞

yi, zj = lim
i→∞

xi,j , z = lim
j→∞

zj (3)

exist – otherwise (2) would not make sense.

xi,j

zj

yi

z

y

i→
∞

j →∞

j →∞

i→∞

Figure 1: Is y = z?

(a) Consider the metric space R with the canonical metric, and let xi,j =
imin(1/i, 1/j). Show that (2) is not true.

(b) We say that the limit limj→∞ xi,j is uniform in i if for every ε > 0 there is
some M ∈ N such that

d(xi,j , yi) < ε for all j >M and all i ∈ N.

For the example in problem (a), show that the limit is not uniform in i.

(c) Show that there is always some subsequence {xI(j),j}j∈N converging to z,
and another subsequence {xi,J(i)}i∈N converging to y. (Here, both of I, J : N→
N are increasing sequences, as in the definition of a subsequence.)

(d) Show that if the limit limj→∞ xi,j is uniform in i, then (2) is true.
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Remark. The morale is: If you want to interchange two limits, then one of
them has to be uniform.

Solution:

(a) We can write

xi,j =

{
1 if i > j
i
j if i < j.

Thus, yi = limj xi,j = 0, while zj = limi xi,j = 1. Clearly, yi → 0 but
zj → 1 as i, j →∞.

(b) If ε < 1 then, no matter the choice of j, we can let i = j to get

d(xi,j , yi) = d(xj,j , 0) = xj,j = 1 ≮ ε.

Hence, the limit is not uniform in i.

(c) For each j ∈ N, let I(j) be such that d(xi,j , zj) < 1/j whenever i > I(j).
(Such a number I(j) exists because xi,j → zj as i→∞ for every fixed j.)
Then

d(xI(j),j , z) 6 d(xI(j),j , zj) + d(zj , z) < 1/j + d(zj , z)→ 0

as j →∞. The same idea works for the other limit.

(d) Let ε > 0 and let M ∈ N be such that

d(xi,j , yi) < ε when j >M , for any i ∈ N.

Passing i→∞ in this inequality gives d(zj , y) 6 ε. Finally, passing j →∞
gives d(z, y) 6 ε. Since ε > 0 was arbitrary, we must have d(z, y) = 0,
whence z = y.

Alternative solution: Let ε > 0 and let M ∈ N be such that
d(xi,j , yi) < ε when j > M . Next, let M̃ be such that d(zj , z) < ε when

j > M̃ . Set J = max(M,M̃). Finally, let N be such that d(xi,J , zJ) < ε
when i > N . Then

d(yi, z) 6 d(yi, xi,J) + d(xi,J , zJ) + d(zJ , z) < 3ε

for all i > N . Thus, yi → z as i→∞, that is,

yi = lim
j→∞

xi,j → z = lim
j→∞

lim
i→∞

xi,j

as i→∞. This completes the proof.

Problem 3. Let (X, d) be a metric space. A function f : X → R is lower
semicontinuous at x ∈ X if for every ε > 0, there is some δ > 0 such that

f(x) < f(y) + ε ∀ y ∈ B(x; δ). (4)
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It is upper semicontinuous at x ∈ X if for every ε > 0, there is some δ > 0 such
that

f(x) > f(y)− ε ∀ y ∈ B(x; δ). (5)

(a) Show that a function is continuous at x if and only if it is both upper and
lower semicontinuous at x.

(b) Show that the function f : R→ R given by

f(x) =

{
x x < 0

x+ 1 x > 0

is upper semicontinuous, but not lower semicontinuous.

(c) Show that if K ⊂ X is compact and f : K → R is lower semicontinuous
then f attains a minimum – there is some x̄ ∈ K such that

f(x̄) 6 f(x) ∀ x ∈ K. (6)

Remark. Lower/upper semicontinuous functions are encountered in many places,
particularly in the field of calculus of variations, where one attempts to find
minima or maxima of functions. As seen in problems (a) and (b), upper/lower
semicontinuity is a weaker property than continuity, but, as seen in problem
(c), semicontinuous functions nonetheless have some of the important proper-
ties that continuous functions have.

Solution:

(a) If x is continuous then, for every ε > 0, there is some δ > 0 such that

|f(x)− f(y)| < ε ∀ y ∈ B(x; δ),

which is the same as

−ε < f(x)− f(y) < ε ∀ y ∈ B(x; δ),

which, again, is the same as

f(y)− ε < f(x) < f(y) + ε ∀ y ∈ B(x; δ),

so f is lower and upper semicontinuous at x.
If f is both lower and upper semicontinuous at x, then for every ε > 0,

there are δ1 > 0 and δ2 > 0 such that (4) and (5) hold with δ = δ1 and
δ = δ2, respectively. Hence, they both also hold for δ = min(δ1, δ2):

f(y)− ε < f(x) < f(y) + ε ∀ y ∈ B(x; δ),

which, as we found out earlier, is the same as

|f(x)− f(y)| < ε ∀ y ∈ B(x; δ).

Thus, f is continuous at x.
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(b) If x 6= 0 then f is continuous at x, so it’s also semicontinuous there.
If x = 0 then f(x) = 1, and if y < x then f(y) = y < f(x), while if y > 0
then f(y) = 1 + y < f(x) + ε provided y < ε. Thus, (5) holds if δ = ε, so
f is upper semicontinuous.

On the other hand, f is not continuous at x = 0, so by 2(a), it cannot
be both upper and lower semicontinuous there; since we have shown that it
is upper semicontinuous, it cannot possibly also be lower semicontinuous.

Alternative solution: f is not lower semicontinuous at x = 0, since
if ε < 1, δ > 0 and y ∈ (−δ, 0) then f(y) + ε = y + ε < ε < 1 = f(x), so
(4) does not hold, no matter the value of δ.

(c) Let m = inf f(K). We claim that there is some x̄ ∈ K such that
f(x̄) = m, at which point we’re done.

Let {yn}n∈N be a minimizing sequence for inf f(K) — a sequence in
f(K) converging to m. For every n ∈ N, let xn ∈ K be such that f(xn) =
yn. Then {xn}n is a sequence in the compact set K, so it has a convergent
subsequence, xn(k) → x̄ ∈ K as k →∞ for some x̄ ∈ K.

Let ε > 0 and let δ > 0 be as in (4). Then, for N large enough that
xn(k) ∈ B(x̄; δ) for every k > N , we get

f(x̄) < f(xn(k)) + ε→ m+ ε as k →∞,

so f(x̄) < m + ε for every ε > 0. Since ε was arbitrary, we must have
f(x̄) 6 m. In particular, inf f(K) = m > f(x̄) > −∞, so we find that f
is bounded from below. But f(x̄) > inf f(K) = m, so f(x̄) = m, as we
wanted.

Problem 4. In this problem we will identify some of the compact subsets of
the metric space

`∞(R) =
{
a : N→ R : ‖a‖`∞ = sup

i∈N
|a(i)| <∞

}
,

equipped with the metric

d∞(a, b) = ‖a− b‖`∞ = sup
i∈N
|a(i)− b(i)|.

Remark. We can think of the elements of `∞ either as sequences {ai}i∈N
(for ai ∈ R), as functions a : N → R, or as infinite-dimensional vectors a =
(a1, a2, . . . ).

(a) Show that the closed, bounded set B(0; 1) is not compact. For instance,
you can let xn = (0, . . . , 0, 1, 0, . . . ) (where the “1” appears in the nth position)
and show that xn lies in B(0; 1) for any n ∈ N, but that {xn}n does not have a
convergent subsequence.

(b) Prove the following:

Theorem. Let K ⊂ `∞(R) be any closed subset satisfying the following: There
exists some C > 0 and N ∈ N such that every a ∈ K satisfies

|a(i)| 6 C ∀ i 6 N, a(i) = 0 ∀ i > N.
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Then K is compact.

You are allowed to use the Bolzano–Weierstrass theorem: If A ⊂ R is closed
and bounded then it’s compact.

Remark. What the above result illustrates is that when we are dealing with
infinite-dimensional spaces, we need some additional restriction on the “be-
haviour at infinity” in order to obtain compactness.

Solution:

(a) We have d∞(xn, xm) = 1 when n 6= m. If there were a convergent
subsequence {xn(k)}k then

1 = d∞(xn(k), xn(l))→ 0 as k, l→∞,

a contradiction.

(b) Let {an}n be a sequence in K. Then {an(1)}n is a bounded sequence
in R, so by Bolzano–Weierstrass it has a subsequence {an1(k)(1)}k∈N con-
verging to some a(1) ∈ R. Likewise, {an1(k)(2)}k∈N is a bounded sequence
in R, so by Bolzano–Weierstrass it has a subsequence {an2(k)(2)}k∈N con-
verging to some a(2) ∈ R. Note that since {an2(k)(1)}k∈N is a subsequence
of {an1(k)(1)}k∈N, we still have an2(k)(1)→ a(1) as k →∞.

Iterating in this way N times, we end up with a sequence of natural
numbers nN (k) ∈ N (for k ∈ N) such that |anN (k)(i)− a(i)| → 0 as k →∞
for every i = 1, 2, . . . , N . Thus, also maxi=1,...,N |anN (k)(i) − a(i)| → 0 as
k →∞.

Define now a =
(
a(1), a(2), . . . , a(N), 0, 0, . . .

)
∈ K. Then

d∞(an, a) = sup
i∈N
|an(i)− a(i)| = max

i=1,...,N
|an(i)− a(i)|

for every n ∈ N. Hence, d∞(anN (k), a)→ 0 as k →∞, as we wanted.
Alternatively: Define Φ : RN → `∞(R) by

Φ(a) = (a(1), . . . , a(N), 0, 0, . . . ) ∀ a ∈ RN .

Then Φ is clearly injective. Let B = Φ−1(K). By the assumption that
a(i) = 0 for all i > N for every a ∈ K, we see that Φ : B → K is also
surjective. If we equip RN with the norm ‖a‖∞ = max(|a1|, . . . , |aN |) then
we see that d`∞(Φ(a),Φ(b)) = ‖a − b‖∞ for all a, b ∈ RN and ‖Φ−1(a) −
Φ−1(b)‖∞ = d`∞(a, b) for all a, b ∈ `∞(R), so both Φ and Φ−1 are contin-
uous.

We see that B is the inverse image of a closed set under the continuous
function Φ, hence B is closed. It is also bounded, since supa∈B ‖a‖∞ =
supa∈B d`∞(Φ(a), 0) = supa∈K d`∞(a, 0) <∞.
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We have shown that B ⊂ RN is closed and bounded, so by Bolzano–
Weierstrass in RN , it is compact. But then K = Φ(B) is the forward image
of a compact set under a continuous function, hence is compact.
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Hints

Warning: Don’t use these hints blindly! When writing your solution,
do not assume that the person who will correct your assignment has
read the hints.

Problem 2(a). Start by identifying the limits yi and zj .

Problem 2(d). Show that yi → z as i→∞.

Problem 3(c). Can you modify the proof of the extreme value theorem to fit
this setting?

Problem 4(b). Recall the proof of the fact that the compact subsets of RN

are those that are closed and bounded.
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