METRIC SPACES

Recall

A requerce $\{x_n\}_n$ in R converges to $x \in R$ if for every E > 0 there is none $N \in M$ such that $|x_n - x| < E$ whenever $n \ge N$.

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at x if for all E > 0there is nome $\delta > 0$ such that |f(x) - f(y)| < E when y is such that $|x - y| < \delta$

We want to generalize from R to other rets

(X,d) convirts of a set X and function d: X × X ~ R ratirfying: A metric mace function a metric d - a (i) Positivity: $d(x,y) \ge 0$ $\forall x,y \in X$, and d(x,y) = 0 only when x = y $d(x,y) = d(y,x) \quad \forall \quad x,y \in X$ (ii) Symmetry: $\forall x_1y_1 \neq \epsilon X$ (iii) Triangle inequality: $d(x,y) \leq d(x,z) + d(z,y)$

You should think of d(x,y) = "distance between x and y"

Example
$$X = R$$
, $d(x,y) = |x-y|$

Example
$$X = \mathbb{R}^n$$
, $d(x,y) = \|x-y\|$

Example

If V is a vector space and
$$\|\cdot\|$$
 is a norm on V, then

 $X = V$, $d(x,y) = \|x-y\|$

is a metric space ("the metric induced by $\|\cdot\|$ ")

Let

X =

and

d(x,y) = distance between

x and y in the
real world

Note: This metric is not induced by any norm

Exercise: Argue in words that this is a metric space.

If (X,d) is a metric space and $A \subseteq X$, then $(A,d_A) \text{ is alro a metric space, where}$ $d_A(x,y) = d(x,y)$ $\forall x,y \in A.$

The inverse triangle inequality

If (X,d) is a metric space then $|d(x,y) - d(x,z)| \leq d(y,z)$ $\forall x,y,z \in X$

Exercise: prove this!

QUESTIONS? COMMENTS?