ALTERNATIVE DEFINITIONS OF CONTINUITY Continuity is no important that it's weful to have several (equivalent) definitions of it.

Let (X, dx) and (Y, dy) be netric spaces. A function $f: X \rightarrow Y$ is continuous at $x \in X$ if for all E>0 there is nome $\delta > 0$ such that $f(x,y) < \delta$. f(f(x), f(y)) < E when $g \in X$ is such that $f(x,y) < \delta$.

A function $f: X \to Y$ is continuous at $x \in X$ if for every E > 0 there is nome $\delta > 0$ such that $f(y) \in B_{x}(f(x); E)$ for every $y \in B_{x}(x; \delta)$

Depuison 3

A function $f: X \to Y$ is continuous at $x \in X$ if for every E > 0 there is nome $\delta > 0$ such that $f(B_X(x; \delta)) \subseteq B_{\delta}(f(x); E)$

A neighborhood of a point $x \in X$ is a ret $U \subseteq X$ for which there is some r > 0 such that $B(x; r) \subseteq U$.

(NO: omega)

Note: B(x;r) is a neighborhood of x

A net U is open iff it is a neighborhood of all of its members.

Let (X,dx) and (Y,dx) be metric yraces and let f: X -> X. Then TFAE:

(i) f is continuous

(ii) For every $x \in X$ and nbd. V of f(x), there is a nbd. U of x no that $f(U) \subseteq V$.

Let (X,dx) and (Y,dy) be metric graces and led $f:X\to Y$.

Then TFAE:

(i) f is continuous

(ii) For every $x \in X$ and nbd. V of f(x), there is a nbd. V of $f(y) \subseteq V$.

Kecall: TFAE: (i) f is continuous (ii) for every $x \in X$ and E > 0 there is nome $\delta > 0$ such that $f(B(x;\delta)) \subseteq B(f(x);E)$

$$\frac{(ii) \Rightarrow (ii)}{\text{nor there is nome whol. } U \text{ of } \times \text{ nor that}}{f(U) \subseteq B(f(x); E)} \text{ is a whol. of } f(x),$$
Let $\delta > 0$ be much that $B(x; \delta) \subseteq U$. Then
$$f(B(x; \delta)) \subseteq f(U) \subseteq B(f(x); E).$$

f $B(x,\delta)$ $F(B(x,\delta))$

(ii) = (ii): Let $x \in X$ and let V be a nbd. of f(x).

Let $\varepsilon > 0$ be much that $B(f(x); \varepsilon) \subseteq V$

There is none $\delta > 0$ nuch that $f(B(x; \delta)) \subseteq B(f(x); E)$.

If $U = B(x, \delta)$ then also $f(U) \subseteq B(f(x), \epsilon) \subseteq V$.

Let (X,dx) and (Y,dy) be metric graces and led $f:X\to Y$.

Then TFAE:

(i) f is continuous

(ii) if $V\subseteq Y$ is open then $f^{-1}(V)$ is open.

(iii) if $F\subseteq Y$ is closed then $f^{-1}(F)$ is closed.

Continuous functions are those whose inverse image preserves openners / closedness.

Let (X,dx) and (Y,dx) be nutric yraces and let f: X - X. Then TFAE: (i) f is continuous (ii) if $V \subseteq Y$ is open then $f^{-1}(V)$ is open. (iii) if $F \subseteq Y$ is closed then $f^{-1}(F)$ is closed.

(i) \Rightarrow (ii): Let $V \subseteq Y$ be open. If $f^{-1}(V) = \emptyset$ then we are done. Otherwise, let $x \in f^{-1}(V)$. Then V is a $n \not l d$, of f(x), no there is a $n \not l d$. U of x much that $f(V) \subseteq V$.

Then also $U \subseteq f^{-1}(V)$. Lard, let $\Gamma > 0$ be much that $B(x; \Gamma) \subseteq V$. Then also $B(x; \Gamma) \subseteq f^{-1}(V)$, no $f^{-1}(V)$ is open.

Let (X,dx) and (Y,dy) be nutric years and led $f:X\to Y$.

Then TFAE:

(i) f is continuous

(ii) if $V\subseteq Y$ is open then $f^{-1}(V)$ is open.

(iii) if $F\subseteq Y$ is closed then $f^{-1}(F)$ is closed.

(i) \Leftarrow (ii): Let $x \in X$, let E > 0, let V = B(f(x); E). Then $f^{-1}(V)$ is open, and $x \in f^{-1}(V)$, no there is nome $\delta > 0$ no that $B(x; \delta) \subseteq f^{-1}(V)$. Then also $f(B(x; \delta)) \subseteq f(f^{-1}(V)) \subseteq V = B(f(x); E)$.

Let (X,dx) and (Y,dy) be nutric spaces and led $f:X\to Y$. Then TFAE: (i) f is continuous (ii) if $V\subseteq Y$ is open then $f^{-1}(V)$ is open. (iii) if $F\subseteq Y$ is closed then $f^{-1}(F)$ is closed.

(iii) \Rightarrow (iii): Let $F \subseteq Y$. Then:

F is closed $\iff F^c$ is open $\implies f^{-1}(F^c)$ is open $\iff f^{-1}(F)^c$ is open (as $f^{-1}(F^c) = f^{-1}(F)^c$) $\iff f^{-1}(F)$ is closed.

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Show that $A = \{x : f(x) > 0 \}$ is open.

We can write $A = f^{-1}((0, \infty))$. The rel $(0, \infty)$ is open, no A must be open.

QUESTIONS? COMMENTS?