AlTERNATIVE DEFINITIONS OF CONTINUITY

Continuity is no important that it's useful to have several (equivalent) definition of it.

Definition 1

Let $\left(X, d_{x}\right)$ and $\left(Y, d_{y}\right)$ be metric spaces.
A function $f: X \rightarrow Y$ is continuous at $x \in X$ if for all $\varepsilon>0$ there is nome $\delta>0$ mech that
$d_{y}(f(x), f(y))<\varepsilon$ when $y \in X$ in mich that $d_{x}(x, y)<\delta$.

Definition 2

A function $f: X \rightarrow Y$ is continuous at $x \in X$ if for every $\varepsilon>0$ there is nome $\delta>0$ much that $f(y) \in B_{y}(f(x) ; \varepsilon)$ for every $y \in B_{x}(x ; \delta)$

Definition 3
A function $f: X \rightarrow Y$ is continuous at $x \in X$ if for every $\varepsilon>0$ there is nome $\delta>0$ munch that

$$
f\left(B_{x}(x ; \delta)\right) \subseteq B_{y}(f(x) ; \varepsilon)
$$

A neighborhood of a point $x \in X$ is a net $U \subseteq X$ for which there is rome $r>0$ mich that $B(x ; r) \subseteq U$. (NO: omegn)

Note: - $B(x ; r)$ is a neighborhood of x

- A net U is open if it is a neighborhood of all of its members.

Definition 4
Let $(X, d x)$ and $(Y, d y)$ be metric paces and let $f: X \rightarrow Y$. Then TFAE:
(i) f is continuous
(ii) For every $x \in X$ and abd. V of $f(x)$, there is a abd. U of x no that $f(U) \subseteq V$.

Definition 4
Let $(X, d x)$ and $(Y, d y)$ be metric paces and let $f: X \rightarrow Y$. Then TFAE:
(i) f is continuous
(ii) For every $x \in X$ and abd. V of $f(x)$, there is a abd. U of x no that $f(U) \subseteq V$.

Recall: TFAE:
(i) f is continuous
(ii) for every $x \in X$ and $\varepsilon>0$ there is nome $\delta>0$ much that $f(B(x ; \delta)) \subseteq B(f(x) ; \varepsilon)$
$(i i) \Rightarrow(\hat{i i})$: Let $\varepsilon>0$. Then $V=B(f \mid x), \varepsilon)$ is a abd. of $f(x)$, no there is rome abd. U of x no that

$$
f(u) \subseteq B(f(x) ; \varepsilon)
$$

Let $\delta>0$ be much that $B(x ; \delta) \subseteq U$. Then

$$
f(B(x ; \delta)) \subseteq f(u) \subseteq B(f(x) ; \varepsilon)
$$

$(i i) \Leftarrow(\hat{i i})$: Let $x \in X$ and let V be a nod. of $f(x)$. Let $\varepsilon>0$ be much that

$$
B(f(x) ; \varepsilon) \subseteq V
$$

There is rome $\delta>0$ mich that

$$
f(B(x ; \delta)) \subseteq B(f(x) ; \varepsilon)
$$

If $U=B(x ; \delta)$ then also $f(U) \subseteq B(f(x) ; \varepsilon) \subseteq V$.

Definition 5
Let $(X, d x)$ and $(Y, d y)$ be metric paces and let $f: X \rightarrow Y$. Then TFAE:
(i) f is continuous
(ii) if $V \subseteq Y$ is open then $f^{-1}(V)$ is open.
(iii) if $F \subseteq Y$ is closed then $f^{-1}(F)$ is closed.

Continuous functions are those whose inverse image preserves opennes/closedness.

Let $(X, d x)$ and $\left(Y, d_{y}\right)$ be metric paces and let $f: X \rightarrow Y$. Then TFAE:
(i) f is continuous
(ii) if $V \subseteq Y$ is open then $f^{-1}(V)$ is open.
(iii) if $F \subseteq y$ is closed then $f^{-1}(F)$ is closed.
$(i) \Rightarrow($ iii $)$ Let $V \leq Y$ be open. If $f^{-1}(V)=\varnothing$ then we are done. otherwise, let $x \in f^{-1}(V)$. Then V is a abd, of $f(x)$, no there is a abd. U of x much that $f(U) \subseteq V$.
Then also $U \subseteq f^{-1}(V)$. Last, let $r>0$ be mich that $B(x ; r) \subseteq U$. Then also $B(x ; r) \subseteq f^{-1}(V)$, co $f^{-1}(V)$ is open.

Let $(X, d x)$ and $\left(Y, d_{y}\right)$ be metric paces and let $f: X \rightarrow Y$. Then tran:
(i) f is continuous
(ii) if $V \subseteq Y$ is open then $f^{-1}(V)$ is open.
(iii) if $F \subseteq Y$ is closed then $f^{-1}(F)$ is closed.
$(i) \Leftarrow($ ii) : Let $x \in X$, let $\varepsilon>0$, let $V=B(f(x) ; \varepsilon)$. Then $f^{-1}(v)$ is open, and $x \in f^{-1}(V)$, no there is rome $\delta>0$ no that $B(x ; \delta) \subseteq f^{-1}(V)$. Then also

$$
f(B(x ; \delta)) \subseteq f\left(f^{-1}(V)\right) \subseteq V=B(f(x) ; \varepsilon)
$$

Let $(X, d x)$ and $\left(Y, d_{y}\right)$ be metric paces and let $f: X \rightarrow Y$. Then tran:
(i) f is continuous
(ii) if $V \subseteq Y$ is open then $f^{-1}(V)$ is open.
(iii) if $F \subseteq Y$ is closed then $f^{-1}(F)$ is closed.
(ii) \Rightarrow (iii): Let $F \subseteq Y$. Then:
F is cooed $\Leftrightarrow F^{c}$ is open $\Rightarrow f^{-1}\left(F^{c}\right)$ is open
$\Leftrightarrow f^{-1}(F)^{c}$ is open (as $\left.f^{-1}\left(F^{c}\right)=f^{-1}(F)^{c}\right)$
$\Leftrightarrow f^{-1}(F)$ is closed.

Example:
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that

$$
A=\{x: f(x)>0\}
$$

is open.
We can write $A=f^{-1}((0, \infty))$. The ret $(0, \infty)$ is open, no A must be open.

Questions?
COMMENTS?

