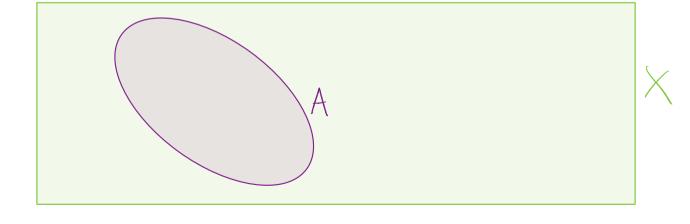
OPEN AND CLOSED SETS

Menor/exterior/boundary points

Let X be a rel and $A \subseteq X$.

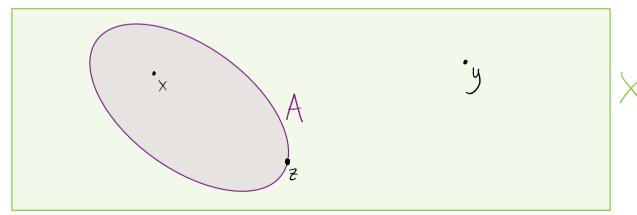
Intuitively, a point x is either invide of A, outside of A, or on the boundary of A.



Recall:
The open ball centred at $x \in X$ with radius $r \ge 0$ is $B(x;r) = \{z \in X : d(x;z) \le r \}$

The closed ball centred at
$$x \in X$$
 with radius $r \ge 0$ is $B(x;r) = \{z \in X : d(x,z) \le r\}$

Let (X,d) be a metric ypace and let A = X. $\cdot \times \in X$ is an interior point of A if $B(x;r) \subseteq A$ for some r > 0· y ∈ X is an exterior point of A y B(y; r) ⊆ Ac for nome r>0 · ZEX is a boundary point of A if it is neither of the above: both $B(z;r) \cap A \neq \emptyset$ and $B(z;r) \cap A^c \neq \emptyset$ for every r > 0Note: Every point in X is exactly one of there three.



· A° = int A = { all interior points of A } is the interior of A (NO: det indre au A) · $\partial A = \{ \text{all boundary points of } A \}$ is the boundary of A (NO: randa til A) • $\overline{A} = clA = A \cup \partial A = ((A^c)^o)^c$ is the closure of A (NO: hillukningen til A)

Exercise: For any $A \subseteq X$, we have $\partial A = \partial (A^c)$

Let (X, d) be a metric space. $A \subseteq X$ is open if $A = A^{\circ}$ $A \subseteq X$ is open if A contains none of its boundary points. $A \subseteq X$ is open if $A \cap \partial A = \emptyset$. $A \subseteq X$ is open if $A \times A$ there is nome F > 0 n.t. $B(x; F) \subseteq A$. Let (X, A) be a metric space. $B \subseteq X$ is closed if B = B $B \subseteq X$ is closed if $B \subseteq B$. $B \subseteq X$ is closed if $B \subseteq B$. Exercise: Some set $A \subseteq X$ is open iff A^c is closed. Some set $B \subseteq X$ is closed iff B^c is open.

Hint: Une the previous exercise.

The open ball $B(x;r) = \{y \in X : d(x;y) < r \}$ is open. The closed ball $B(x;r) = \{y \in X : d(x;y) \le r \}$ is closed.

Proof Recall that a ret B is open iff $\forall x \in B$ $\exists r > 0$ such that $B(x,r) \subseteq B$. Let $y \in B(x,r)$. Let $S = \Gamma - d(x_1y)$. Then S > 0, and $B(y_1, s) \subseteq B(x_1, \Gamma)$. Indeed, $Z \in B(y_1, s) \iff d(y_1, Z) < S$, no $d(x_1z) \leq d(x_1y) + d(y_1z) < d(x_1y) + r - d(x_1y) = r$

Let $A \subseteq X$. Then A° is open, and \overline{A} is closed. Proof: Recall that $A^{\circ} = \{ \text{all interior points of } A \} \}$. Let $X \in A^{\circ}$. Then X is an interior point of A, no $\overline{A} \cap A \cap A$.

much that $B(x;r) \subseteq A$. Claim B(x,r) c A°. Let $y \in B(x,r)$. Then d(x,y) < r, no $B(y;s) \subseteq B(x;r) \subseteq A$ if s = r - d(x, y). Hence, $y \in A$.

Exercise: A is closed.

Let FEX. Then TFAE: (i) F is closed (ii) if {xn}n is a requerce in F converging to x ∈ X, then x ∈ F.

(ii) if
$$\{x_n\}_n$$
 is a requerce in F converging to $x \in X$, then $x \in F$.
(i) \Rightarrow (ii): If $x \notin F$ then $x \in F^c$, which is open, so $\exists r > 0$

such that $B(x;r) \subseteq F^{c}$. het NEN much that xn ∈ B(x;r) ¥ n≥N.

Then both $x_n \in F$ and $x_n \in B(x_i r) \subseteq F^c$

Let $F \subseteq X$. Then TFAE:

(i) F is closed

(ii) if $\{x_n\}_n$ is a requerce in F converging to $x \in X$, then $x \in F$.

(i)
$$\Leftarrow$$
 (ii): Let $x \in \partial F$. Then both $B(x;r) \cap F \neq \emptyset$ and $B(x;r) \cap F^c \neq \emptyset$ for every $r > 0$.

Then for every $n \in \mathbb{N}$, there is nome $x_n \in B(x;h) \cap F$.

Moreover, $d(x_n,x) < \frac{1}{n+\infty} = 0$.

Hence, $x_n \xrightarrow{n \to \infty} X$, no by (ii), $x \in \overline{+}$.

QUESTIONS? COMMENTS?