COMPACTNESS

Kecall:
Completeners is wreful nince if a requence neems
to converge (is Cauchy), then it achially converges.

But it is not always no early to show that a requence is Carrely!

Recall:
Completeners is wreful nince if a requence reems
to converge (is Cauchy), then it actually converges.

But it is not always no early to show that a requence is Carrely!

- It's too much to require that all requences converge.
- We can require that a subsequence will converge

Let {xn}new be nome requence. A subsequence is a requence of the form {xn(k)}kew, where n(k) EN Y kEN, and n(1)<n(2)<---

Note: $n(k) \ge k \quad \forall \quad k \in \mathbb{N}$.

Let (X,d) be a metric space. If fxn 3n converges, then all subsequences converge, and the limit is the same.

Proof. Let E > 0, let $N \in \mathbb{N}$ be such that $d(x_n, x) < E$ when $n \ge N$. Then $n(k) \ge N$ when $k \ge N$, so also $d(x_{n(k)}, x) < E$.

A netrie space (X,d) is compact if every requence {xn}_n has a convergent subsequence {xn(k)}_k.

A subset K of a metric space (X,d) is compact if (K,d) is compact.

Let (X,d) be a metric space.

If K \(\in X \) is finite then it is compact. Kroof: Let {xn} n be a requerce in K.

Let (X,d) be compact. Then it is complete. Proof: Let {xn} he Cauchy. As (X,d) is compact, there is some convergent subsequence {xn(k)}k converging to $x \in X$. For $\varepsilon > 0$, let $\widetilde{N} \in \mathbb{N}$ be n.t. $d(x_{n(k)}, x) < \varepsilon$ when $k \geq \tilde{N}$ and let \widehat{N} be s.t. $d(x_n, x_m) < \mathcal{E}$ when $n, m \ge \widehat{N}$. Let $M = \max(\hat{N}, n(\tilde{N}))$. If $m \ge M$ then $d(x_{m,x}) \leq d(x_{m,x} \times_{n(M)}) + d(x_{n(M),x} \times) < 2 \varepsilon.$

Hence, {xn}n converges to x.

Summary

· Convergence >> nubrequences converge

· Finite > compact

· Compact >> complète

QUESTIONS? COMMENTS?